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ABSTRACT
Running is a widely embraced form of aerobic exercise, offer-
ing various physical and mental benefits. However, improper
running gaits (i.e., the way of foot landing) can pose safety
risks and impact running efficiency. As many runners lack
the knowledge or continuous attention to manage their foot
strikes during running, in this work, we present a portable
and non-invasive running gait monitoring system. Specifi-
cally, we leverage the in-ear microphone on wireless earbuds
to capture the vibrations generated by foot strikes. Landing
with different parts of the foot (e.g., forefoot and heel) gener-
ates distinct vibration patterns, and thus we utilize machine
learning to classify these patterns for running gait detection.
With data collected from 25 subjects, our system achieves an
accuracy of 87.80% in identifying three gait types. We also
demonstrate its robustness under a variety of scenarios and
measure its system performance.
1 INTRODUCTION
Aerobic exercise is vital for fitness, improving cardiovas-
cular health, stamina, endurance, mental well-being, and
overall fitness. Running is now popular for aerobic exercise
due to its simplicity, accessibility, and affordability. Accord-
ing to Statista Research Department’s 2022 report, around
50 million Americans (15% of the U.S. population) partici-
pate in running or jogging, with this number continuing to
grow [2]. Prioritizing safety and efficiency during running
is thus crucial to minimize the risk of injuries and maximize
performance potential. Most runners, especially untrained
beginners, lack knowledge to manage running parameters
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like pace, cadence, gaits, heart rate (HR), and respiration rate.
Therefore, automatic monitoring of these parameters and
providing real-time feedback while running are crucial. This
enhances the running experience, reduces injury risk, and
improves efficiency and performance [10].

Existing studies have primarily measured three groups of
running parameters for automatic monitoring and prompt
feedback: 1) Location-related factors, including velocity, ori-
entation, position, and stride characteristics, are measured
using common sensors such as IMUs and GPS on commercial
smartphones and smartwatches [6]. 2) Physiology-related
factors like heart rate (HR) and respiration rate (RR) can
be monitored with chest-worn straps such as Polar [3] and
Zephyr [4] or smartwatches [1]. 3) Strike-related factors
such as foot placement and focus, ground reaction force, and
force distribution, are mainly measured using multiple IMUs
worn on the body [19, 20], sensors in shoes [9, 17], or force
platforms on the ground [14]. These approaches are 1) bulky
and requiring additional user efforts, resulting in low accep-
tance rate [9, 17, 19, 20], 2) costly to implement with limited
monitoring coverage [14].

In this paper, we focus on the landing posture of runners’
feet, a crucial parameter for both running safety and effi-
ciency. Specifically, we aim to detect three types of running
gaits, i.e., overstride, forefoot strike, and heel strike, using
portable and non-invasive devices to enhance user accep-
tance and facilitate practical adoption. Thus, we have chosen
earbuds, one of the most popular runners’ companions dur-
ing running, as our sensing device. We leverage the in-ear
microphone on earbuds to measure the sounds/vibrations
generated at the foot, propagated to the ear canal, and am-
plified by the occlusion effect [7, 13]. Since different parts of
the foot have different compositions of tissues and bones, the
vibrations generated by different gait types exhibit different
patterns (section 2.1). We then devised a signal processing
and machine learning pipeline to classify the gait types. We
collected data from 25 subjects using our prototype, our sys-
tem achieved 87.80% classification accuracy. We also demon-
strate its robustness against various realistic factors such as
ground conditions, shoes, and running speeds. Furthermore,
we implemented it as a smartphone application and mea-
sured the latency and power consumption. With processing
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Fig. 1: Illustration of three gaits and their foot close-up. Fig. 2: In-ear (upper row) and Out-ear (lower row) signals of
three running gaits and a noisy heel strike gait signal.

Table 1: Three running gaits, classified by the stride-strike
matrix.

Stride
Strike Forefoot Heel

Over NA Overstride
Normal Forefoot Strike Heel Strike

one-second data, our system requires 11.01ms and consumes
0.0055mAh on the Xiaomi 13 smartphone, demonstrating
the lightweight design of our system. Our system enables
portable, accurate, and lightweight running gait monitoring,
facilitating safer and more efficient running practices.

2 SYSTEM DESIGN
2.1 Gait Type Definition
Stride vs. Strike: Usually, stride and strike are used inter-
changeably to describe the movement of the human foot
during running. However, there are small differences be-
tween them. Specifically, stride depicts moving the foot from
one location to another (i.e., the swing phase), while strike
refers to the part of the foot that contacts the ground first
(i.e., the landing phase). As shown in Table 1, the stride type
could be normal or over, while the strike pattern could be
forefoot or heel. In this work, we define gait type as the com-
bination of different stride and strike types and mainly focus
on forefoot strike, heel strike, and overstride, as illustrated in
Figure 1. Note that we exclude the combination of overstride
with forefoot strike as it is unlikely to happen in practice.

Overstride: Overstride happens when the front leg extends
too far forward during running, misaligning with the run-
ner’s center of mass. It’s often seen as improper and haz-
ardous, potentially causing discomfort or injuries [12]. In
addition, overstride might also decrease energy efficiency as
it increases the braking force exerted on the body [10].

Forefoot Strike: Forefoot strike occurs when a runner exe-
cutes a normal stride and lands on the ball of the foot or the
toes. It’s typically effective for sprinting, but landing too far
forward on the toes isn’t recommended for longer distances,
as it may result in shin splints or other injuries [11].
Heel Strike: Heel strike occurs when a runner lands with

the heel during a normal stride. It’s a preferred strike pattern
for distance runners as it is more energy-efficient at medium

speeds. However, heel strikes can exert additional strain on
the knees, potentially leading to knee and hip pain.
It’s important to note that there’s no universally agreed

strike pattern for runners, as it depends on factors such
as the stage of the run, the runner’s proficiency level, and
individual preferences. Therefore, continuous monitoring of
strike patterns could help runners reduce safety risks and
improve running efficiency.

2.2 Sensor Identification on Earbuds
Earbuds have been chosen as the sensing platform as they are
a popular accessory for runners. The most common sensor
on existing earbuds is the microphone, including the out-ear
microphone that captures human voices for communication
purposes and the in-ear microphone that measures residual
sounds in the ear canal for active noise cancellation. Re-
cent studies also demonstrated that in-ear microphones can
capture low-frequency human-generated vibrations/sounds
through bone conduction and the occlusion effect [7]. Thus,
we simultaneously collected data on different running gaits
using both microphones (Figure 2) and explored their feasi-
bility for running gait classification. The left three columns
display distinct patterns due to differences in ground con-
tact and propagation paths through the human skeleton for
both microphones. However, the in-ear microphone yields
stronger gait signals as the bone-conducted signal is further
amplified in the ear canal due to the occlusion effect [7]. The
right two columns compare the impact of external noise on
both microphones. We can see from the raw signals that both
microphones are affected. However, after lowpass filtering
(<100 Hz), the in-ear signal shows clear gait patterns, while
the noise heavily contaminates the out-ear signal. Thus, we
select the in-ear microphone for gait signal measurement
due to its effectiveness and robustness.

2.3 Signal Processing and Machine
Learning Pipeline

Figure 3 depicts the proposed pipeline, consisting of filtering,
segmentation, feature extraction, and gait classification.

Envelope-based Cycle Segmentation: To eliminate pos-
sible environmental noise (usually higher than 100 Hz), we
first apply a low-pass filter (LPF) with a cut-off frequency



Fig. 3: The signal processing pipeline of our system.
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Fig. 4: Envelope-based cycle segmentation of gait signal. (a)
low-pass filtered (LPF) heel strike signal, (b) upper envelopes
of low-pass filtered heel strike signal, and (c) peaks of upper
envelopes and 200 ms samples.

of 100 Hz to the in-ear signal. The resulting signal refers to
the gait signal (Figure 4 (a)). Then, the envelope of the gait
signal is extracted using the Hilbert transform. Afterward, a
low-pass filter with a cut-off frequency of 5 Hz is applied to
smooth the envelope signal (Figure 4(b)). Finally, we perform
peak detection on the filtered envelope, where the peaks
correspond to the time when the human foot hits the ground.
Therefore, the samples that are located 100 ms before and
100 ms after each peak are regarded as the gait signal for a
single foot strike (200 ms in total) (Figure 4(c)).

Feature Extraction: MFCC feature is commonly used in
speech and audio processing. However, its effectiveness in
capturing low-frequency signals like gait sounds (<100Hz)
may be limited as it is designed based on human ear sen-
sitivity to higher frequencies. In detail, MFCC decomposes
the signal into Mel spectrograms with varying bandwidth,
i.e., higher resolution in the human audible frequency range
while extremely low resolution for signals below 100 Hz.
Thus, we propose to apply Fast Fourier Transform (FFT),
which divides the spectrum into bands with equal widths,
to the segmented signals to obtain the energy features. Con-
cretely, after removing the DC component, we applied a
65536-point FFT to each 200 ms gait signal, yielding a fre-
quency resolution of 0.12 Hz. The frequencies below 100 Hz
are divided into 40 sub-frequency bands, each spanning 2.5
Hz. By calculating the average energy in each sub-frequency
band, 40 energy values are obtained as the features.
Model Development and Gait Classification:We opt

for an ML-based approach for gait type classification due
to its superior performance and relatively low computation.
Thus, the extracted features are then fed into an ML model
for training. We consider four common machine learning
classifiers, namely Support Vector Machine (SVM), K Nearest
Neighbors (KNN), Decision Tree (DT), and Random Forest
(RF), and select the best one as evaluated in Section 4.1.

In the run-time stage, we follow the same pipeline to pro-
cess the in-ear signal. The resulting features are passed to the
pre-trained ML model for real-time gait-type classification.

(a) (b) (c)
Fig. 5: (a) The customized earbuds prototype and accompa-
nying data recording device, (b) illustration of a participant
wearing the device, and (c) flowcharts of gait data collection.

3 PROTOTYPING AND DATA
COLLECTION

The raw data of in-ear microphones on off-the-shelf earbuds
is inaccessible due to the lack of APIs. Thus, we developed
a prototype (Figure 5(a)) for data collection and evaluation.
This prototype features a 3D-printed earbud shell housing
an in-ear microphone positioned at the front of the earbud
cavity, facing toward the ear canal. The microphone is con-
nected to a Bela Mini Board via audio jacks. The prototype
is powered by a power bank and conveniently enclosed in a
small back bag (Figure 5(b)). To ensure participant comfort
and achieve a good seal, three different sizes of foam ear tips
are provided to accommodate various ear canal sizes.

We recruited 25 participants (16 males, 9 females) for data
collection, with IRB approved by the authors’ institution.
Figure 5(c) illustrates the flow of data collection. Each partic-
ipant ran on an outdoor rubber track, instructed to perform
specific gait types—forefoot strike, heel strike, and overstride,
at their comfortable pace. Each gait type was recorded for
two two-minute sessions, with a one-minute break between
sessions to mitigate potential movement deviations caused
by participant fatigue. Each participant completed six ses-
sions, resulting in a total of 49,886 steps recorded for all the
subjects.

4 PERFORMANCE EVALUATION
4.1 Comparison of Classifiers
As mentioned in Section 2.3, we utilize conventional ML
classifiers for recognizing gait types due to their simplicity
and lightweight nature. Data is split into training (75%) and
testing (25%) sets for each subject. Four typical classifiers
(KNN, SVM, DT, and RF) are employed and compared. Fig-
ure 6(a) depicts the average recognition accuracy across 25
subjects. Notably, all classifiers achieve over 80% accuracy,
with KNN reaching the highest accuracy of 87.80%. Hence,
subsequent analyses utilize KNN as the classifier.
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Fig. 6: (a) Overall performance of four typical classifiers, and
(b) individual performance of employing MFCC and FFT.
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Fig. 7: (a) Overall confusion matrix of each gait type, and (b)
individual performance of each gait type.
4.2 Comparison of Features: MFCC vs. FFT
In Section 2.3, we propose using FFT features instead of
MFCC features for gait type classification due to the low-
frequency nature of gait signals. Figure 6(b) compares the
recognition accuracy of both feature types across subjects.
We can observe that FFT features consistently outperform
MFCC features, achieving an average accuracy of 87.80% com-
pared to 80.01% for MFCC, representing an approximately 8%
improvement. Figure 7(a) displays the confusion matrix for
the three gait types using KNN and FFT features. Forefoot
strike shows the highest accuracy, while the model struggles
with distinguishing heel strike and overstride due to their
similar landing patterns.
4.3 Individual Performance
In Figure 7(b), we further plot the accuracy of each gait type
for each subject. First, we can see there is no significant
performance variation across different subjects, indicating
that our approach can be applied to different individuals.
Second, interestingly, we observe that forefoot strike does not
always achieve the highest accuracy as analyzed above, while
heel strike and overstride are recognized more accurately
for some subjects (e.g., subjects 2, 9, 13 for heel strike, and
subjects 19 for overstride). We found that the recognition
performance is also related to the preferred running gait type
of the user. For instance, subject 2 usually runs with heel
strike. Therefore, during data collection, she can perform
more consistent heel strikes compared to the other two gait
types, resulting in higher-quality heel strike data for model
training and in turn higher accuracy during testing.
4.4 Performance of Leave-one-out Test
Individual models require the users to collect personal data
for training. To assess whether a pre-trained model can be
applied to unseen users, we conducted the leave-one-out
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Fig. 8: (a) Individual performance for leave-one-out test, and
(b) performance comparison between employing general
model and individual model.

Table 2: Classification performance of different shoes.

Training Shoe1 Shoe2 Shoe1+Shoe2
Testing Shoe1 Shoe2 Shoe1 Shoe2 Shoe1 Shoe2

S1 90.83% 85.27% 85.74% 87.91% 89.30% 86.82%
S2 87.29% 83.1% 81.40% 84.67% 85.50% 84.33%
S3 90.08% 82.98% 82.47% 86.32% 86.78% 84.83%

test, where only one user is iteratively selected for testing
while the remaining subjects are for training. Figure 8(a)
indicates the average accuracy drop from 87.70% to 78.10%,
which may be attributed to: 1) gait signals captured inside
the ear canal are propagated through bone conduction across
the whole body, while different people might have distinct
skeletons, leading to a unique modulation on the gait signals;
2) different subjects might perform the three gait types in
slightly different ways, resulting in pattern variations.
To solve this issue, the user needs to provide some per-

sonal samples for model training. Here, we investigate two
different strategies: 1) individual model training with differ-
ent numbers of personal samples and 2) model fine-tuning
with personal data. From Figure 8(b), with only 10 samples,
the individual model yields even poorer performance com-
pared to the general model. This is because the general model
can benefit from a larger volume of training data. By increas-
ing the number of personal samples, the accuracy gradu-
ally increases until it saturates at 87.67% with 140 samples.
For model fine-tuning, the accuracy consistently increases
with more personal samples. In specific, with 70 samples,
it achieves the same performance as the individual models.
While with more samples, the performance is lower because
the variations from other subjects might interfere with the
current subject. Thus, we conclude that 1) Without personal
data, our approach offers 78.1% recognition accuracy; 2)With
limited samples (<70), train the model alongside others’ data;
3) With more samples (>70), train solely with personal data.
4.5 Impact of Different Shoes
Our approach relies on the sounds/vibrations produced dur-
ing foot-ground contact to distinguish gait types. One factor
affecting these sounds is the type of running shoes, which
may vary in sole materials or air cushioning thicknesses.
To investigate this, we conducted a small-scale study with
three subjects. Each subject wore two different shoes and



Table 3: Performance of different ground conditions.

Training Rubber Cement Rubber+Cement
Testing Rubber Cement Rubber Cement Rubber Cement

S1 90.83% 85.35% 83.61% 93.40% 86.47% 90.74%
S2 87.29% 82.06% 81.53% 89.77% 84.19% 87.13%
S3 90.08% 84.17% 84.49% 92.46% 87.46% 90.13%

Table 4: Performance at different running speeds.

Testing
Training Slow Normal Fast Slow+Normal+Fast

Slow 87.81% 83.32% 81.08% 87.58%
Normal 84.55% 89.15% 80.52% 87.36%
Fast 83.54% 80.74% 86.13% 86.02%

performed three gait types. Table 2 show that: 1) Training
and testing on the same shoes yield the best performance; 2)
Testing with an unseen shoe leads to a 4% accuracy drop due
to material and geometry variations affecting the signals; 3)
Using data from both shoes for training improves individual
accuracy compared to testing with unseen shoes. However,
our leave-one-out test already accounts for individual shoe
differences, the impact of running shoes is therefore limited.
4.6 Impact of Ground Conditions
Runners encounter various ground materials, such as rubber
tracks or cement roads, each with unique properties influenc-
ing foot-ground contact sounds. For instance, rubber tracks
offer greater shock absorption and longer contact times, af-
fecting foot strike sounds and classification performance. To
assess this impact, we had three subjects run on both rubber
tracks and cement roads, representing soft and hard ground
materials. Table 3 shows that: 1) Cement roads showed better
performance due to their harder surface, which minimizes vi-
bration absorption during foot strikes; 2) Testing on unseen
ground conditions resulted in a 7% accuracy drop, attrib-
uted to signal pattern changes; 3) Combining data from both
ground conditions for training improved recognition accura-
cies. Given the limited ground conditions, users can collect
data from each for training. Moreover, since runners often
prefer specific ground conditions, models tailored to these
conditions can optimize performance.
4.7 Impact of Running Speeds
Runners may vary in speed, adjusting stride length while
maintaining a consistent cadence [15]. However, speed ad-
justment involves altering foot-ground contact force, poten-
tially increasing gait signal magnitude. To assess speed’s
impact on gait type recognition, we recruited one subject to
run at three speeds (slow: 7.5 km/h, normal: 10 km/h, fast: 12
km/h) and conducted the gait type recognition. Table 4 shows
recognition performance with different training and testing
data. When training and testing with different speeds, there’s
an average 5% accuracy drop, indicating slight differences in
gait patterns at various speeds, likely due to biomechanical
and muscle activation variations. Combining data from all

Table 5: System performance of our system executed on Xi-
aomi 13 to process one-second data.

Pre- Feature Gait Overallprocessing extraction prediction
CPU (%) 3.4 4.8 6 -

Latency (ms) 0.38 5.91 4.72 11.01
Energy (mAh) 0.0001 0.0030 0.0024 0.0055

Battery Usage (%/hour) 3 4 4 1.10
speeds for training significantly improves accuracy, yield-
ing performance akin to when training and testing data are
sourced from the same speed.

4.8 System Performance
We implement our system as anAndroid application and eval-
uate its performance on Xiaomi 13, featuring a Snapdragon
8 Gen 2 processor and a 4500mAh battery. The gait type
classification process involves three stages: pre-processing
(low-pass filtering and peak segmentation), feature extrac-
tion, and gait prediction.

To gauge system performance, we measure CPU load and
latency by running a specific code segment 1000 times, aver-
aging over five iterations. Battery usage is assessed during
one hour of background processing with the screen off, sub-
tracting idle standby consumption. Table 5 summarizes the
performance based on processing one-second data. Gait type
recognition completes within 11.01 ms, ensuring real-time
detection. CPU load remains low at around 5%. Power con-
sumption is approximately 1.1% battery capacity per hour,
comparable to typical smartphone applications like music
players (2%/hour). These results highlight the lightweight
design of our classification pipelines, ensuring minimal bur-
den on the mobile device and prolonged operation without
excessive battery drain.

5 RELATEDWORK
Extensive research has delved into running assistant systems,
focusing on three key factors: location-related, strike-related,
and physiology-related aspects. The first category revolves
around factors such as velocity, step counts, stride frequency,
and stride length. For instance, Seethi et al. [16] showcased a
precise running speed detection algorithm using accelerom-
eter data and deep convolutional neural networks. The sec-
ond category covers physiology-related factors like heart
rate (HR) and respiratory rate (RR). hEARt [5] proposed
monitoring HR during running using an in-ear microphone,
while RunBuddy [8] and ER-Rhythm [18] developed meth-
ods for monitoring RR using smartphone IMUs and RFID,
respectively. The third category involves strike-related fac-
tors, including foot placement, ground reaction force, and
force distribution. These factors are typically measured us-
ing multiple IMUs worn on the body, sensors integrated into
shoes, and force platforms on the ground. For example, Has-
san et al. [9] introduced a wearable running assistant that
detects heel striking and controls foot angle before landing
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Fig. 9: (a) Left and right ear signal during a forefoot strike
running, and (b) The RMSE of left and right ear signals.

to reduce knee-related injuries. Similarly, Zhang et al. [19]
used multiple body-worn IMUs to detect common running
patterns. Despite their effectiveness, these methods can be
bulky, uncomfortable, or expensive. We delve deeper by de-
veloping portable and lightweight solutions for continuous,
high-fidelity monitoring across various gait types.

6 DISCUSSION AND FUTUREWORK
Symmetry: earbuds & feet.We utilize a single earbud to
detect the user’s gait type, defining each gait cycle as a foot
strike. However, it cannot distinguish whether detected gait
is from the left or right foot. However, if both earbuds are
utilized, the amplitude of the signals alternate, as shown in
Figure 9(b). This attributes to the small difference of propa-
gation distance between the two years. Specifically, left foot
strike results in higher amplitude on signals from left ear, and
vice versa. Thus, we can leverage both earbuds to identify
the left and right foot strikes.
Real-time feedback/guidance. Currently, our pipeline

ends after detecting the gait type, without making user of the
detection results to provide real-time feedback or guidance.
In the future, we plan to apply the domain knowledge of run-
ning, such as the optimal gait type of different speeds, stages
of the run, etc., and design an coaching system. For instance,
the runners can specify the running distance and duration
before the run, and the coaching system can suggest what is
the gait type to be used at different stages. During running,
the system can provide audio guidance to the runners and
correct them if improper gaits are detected.
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