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ABSTRACT
Music is a universal component of human culture, which influences
emotion, and mental state and also has a direct impact on the phys-
iological functioning of the body. Heart rate, breathing rate and
heart rate variability have been shown to be impacted by music
listening, although the exact impact of combinations of musical
features on these parameters is mostly unexplored. However, ex-
ploring how these musical features influence physiology enhances
our understanding of the potential of music to be used as a tool
to regulate and provide interventions. In this paper, we present
EarTune, a system for predicting changes in physiological parame-
ters and subjective categorisation of the ‘feeling’ of a song using
only the vital signs that can be collected using earables. With an ac-
curacy of 70% for predicting the change in physiology due to music
listening and an accuracy of 92% in predicting the user’s ‘feeling’
of the song, EarTune paves the way towards the development of a
system that can tailor music suggestions based on an individual’s
current physiological state, contextual state and emotional needs.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting.
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1 INTRODUCTION
Music is a universal component of human culture, which has long
been used to impact human emotion and mental states [18]. In
childhood, lullabies are used to stop crying; in workouts, pop music
is used to motivate and to overcome tiredness, as well as to improve
exercise efficiency [15]. However, the influence of music goes be-
yond emotion and extends into the physiological functioning of
the body.

Body functions, such as heart rate, heart rate variability and
breathing rate, are regulated by the autonomic nervous system
(ANS), which consists of the sympathetic nervous system (SNS), re-
sponsible for the ‘fight or flight’ response, and the parasympathetic
nervous system (PNS), which promotes relaxation and recovery.
Music has been shown to stimulate either system, depending on
the properties of the music itself such as its tempo, intensity, and
rhythm. This stimulation of one system over another results in the
increase or decrease of involuntary bodily functions. For example,
fast-paced, rhythmically intense music has been shown to increase
heart rate, and breathing rate and decrease heart rate variability
(HRV), mimicking the body’s natural response to physical activity
or stress [17, 18]. On the other hand, slow, melodic songs often
have a calming effect, reducing these rates and inducing a state of
relaxation. There is also a growing body of literature indicating
that music affects exercise - both in terms of exercise performance,
and the individual’s rate of perceived exertion (RPE) as well as
enjoyment during exercise [15]. Additionally, there is evidence that
using music with the wrong features can actually hinder exercise
enjoyment and perception of exhaustion [19]. It is also evident from
literature, that the physiological effects of music listening differ
based on the familiarity of the music [3]. Suppose a person likes
a particular song and feels an emotional connection to that piece
of music. In that case, they might have a different emotional, and
thus physiological response to listening to that song.

Exploring how musical features influence physiology enhances
our understanding of the potential of music to be used as a tool
to regulate and provide interventions. For example, music could
be tailored for exercise based on a person’s mood and physiology.
Music could also be used for non-pharmacological interventions
such as to reduce anxiety or panic attacks.

644

https://orcid.org/0000-0002-5508-7188
https://orcid.org/0000-0003-0768-4735
https://orcid.org/0000-0001-5057-9557
https://orcid.org/0000-0001-9614-4380
https://orcid.org/0000-0003-4444-6242
https://doi.org/10.1145/3675094.3680519
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3675094.3680519
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3675094.3680519&domain=pdf&date_stamp=2024-10-05


UbiComp Companion ’24, October 5–9, 2024, Melbourne, VIC, Australia Kayla-Jade Butkow, Andrea Ferlini, Fahim Kawsar, Cecilia Mascolo, & Alessandro Montanari

Earables, or sensor-equipped earbuds, are the optimal device
for such a system. Through their fundamental functionality, ear-
ables provide music playback to the user and so can deliver the
intervention. Modern earables, such as the OmniBuds1 provide
continuous vital signs from PPG sensors on the device. These vitals
include heart rate, breathing rate and heart rate variability. Other
works [2, 4, 8, 9, 12, 14, 16] also show the possibility of obtaining
vital signs using PPG and microphones on earables.

In this paper, we present EarTune, a profiler for predicting changes
in physiology and subjective categorisation of the type of song using
only the vital signs that can be collected using earables. Specifically,
we collected physiological data from users while listening to music
of two categories (with the songs defined by the user): calming and
energetic. We extract music features and physiological features and
employ machine learning to identify the resulting change (increase
or decrease) in physiology based on music listening. We also use
the features to predict which category the user will place the song
in. In doing so, we develop a system that can both understand the
resultant ‘feel’ of a song for the user and also the change in their
physiology due to listening. This forms the basis for a music system
which can select specific music for a user based on their context
(i.e., during exercise, a user will want an energetic song), or mood
(i.e., when stressed, a user will want a calming song).

This paper makes the following contributions:
• We developed, for the first time, a profiler of physiological
changes to music listening based on physiological features
that can be extracted with earables. EarTune paves the way
towards developing systems that can tailor music recommen-
dations based on an individual’s current physiological state,
contextual state and emotional needs.

• We collected a novel dataset of physiological data from 15
participants while listening to music.

• We performed an analysis of the impact of music listening
on physiology and found that we can predict the direction
of change of physiological parameters with a 70% accuracy.
We can also predict the user’s categorisation of a song with
an accuracy of 92%.

2 SYSTEM DESIGN
Our overall system pipeline is provided in Figure 1. EarTune uses
features extracted from music to predict the direction of change
(i.e., increase or decrease) of physiological parameters due to music
listening.

2.1 Study Design
In this work, we aim to study the link between musical features
and changes in human physiology. Due to the strong individual
preference for music, we center the study around users’ preferred
music, rather than music selected by the investigators. This ensures
that strong physiological reactions are not due to dislike of the song.
To achieve this, prior to the data collection, we asked participants
to make two playlists, each consisting of 10 songs. The first playlist
contained songs that make the user feel excited and energetic and
the second, songs which make the user feel calm and relaxed.

1https://www.omnibuds.tech/

From these two playlists, we curated a playlist per user contain-
ing two exciting songs from the playlist they provided and two
calming songs from their playlist. We also played the user one song
that was not present in any of the user’s playlists, and which was
common to all users i.e., an unseen song. This song was included to
analyse whether we could still make accurate predictions of physi-
ological changes for a song without a predefined category from the
user. Between each song of the same type, we included a 30-second
silent baseline (BL) period. Between songs of different types, we in-
cluded a three-minute silent baseline period. These baselines were
included to allow the physiological parameters to return to a resting
state. They also enabled us to compare the changed state during the
song to the state of the most recent baseline. This playlist structure
is indicated in Figure 2.

2.2 Data collection playlist generation
To select the songs for the data collection sessions, we extracted
features from the music in the user’s playlists (as discussed in
Section 2.4). We then applied principle component analysis for di-
mensionality reduction to two dimensions and performed k-means
clustering on the music features per user to generate two clusters:
one of which should contain the energetic songs and one which
should contain the calming songs. The intuition behind this is that
although music is personal, the music that makes a person feel a
specific way should have similar musical features and thus should
cluster together. Based on the clustering, we selected two songs per
cluster that lie close to one another, but far from the other cluster
to try and achieve measurable changes in physiology due to vastly
different music. The K-means clustering for one user is provided in
Figure 3. From the figure, it is clear that the intuition mostly holds,
since all the calm songs lie within one cluster. However, two of the
energetic songs lie within the calm cluster. For this specific user,
we selected songs E4 and E9, and C7 and C8.

2.3 Data collection
During the data collection sessions, participants wore a Zephyr
BioHarness 3.0 chest strap. The Zephyr captures ECG signals and
breathing signals using a pressure sensor. While we envision the
final system running on a sensor-equipped earable, we collected
data from the Zephyr to ensure system development using a high-
fidelity data source. While wearing the Zephyr, participants sat and
relaxed in a room while wearing their earphones. During the ses-
sion, they listened to their custom playlist as detailed in Section 2.1.
In total, we collected data from 15 participants, with each session
lasting approximately 30 minutes.

2.4 Music Feature Extraction
To extract features from the songs themselves, we leverage both
high and low level features. We extract the high-level features
from the Spotify API2, and low-level features using Essentia3. The
selected features are depicted in Figure 4. These features were
chosen as they relate both to the high-level feel of the song (e.g.,
energy is a measure of the intensity and activity level of a song;
valence is a measure of how positive sounding the song is), and
2https://developer.spotify.com/documentation/web-api/reference/get-audio-features
3https://essentia.upf.edu/index.html
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Figure 1: EarTune System Overview.
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Figure 2: Data collection playlist structure.
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Figure 3: K-means clustering of musical features, where E refers to
the songs from the energetic playlist, and C to the songs from the
calm playlist.

the low-level features of the signal (e.g.,MFCCs which relate to the
frequency content of the song). This results in 88 features being
extracted per song. These features are listed in Appendix A.

2.5 Physiological Feature Extraction
To assess the impact of music on physiology, we extract a large
number of physiological features. We extract physiological features
for 30 seconds before each song (during the silent period before
the song i.e., the baseline), and then for the last 30 seconds of each
song and subtract them to calculate the change in the physiological
parameter. According to literature, heart rate, breathing rate and
HRV are the physiological parameters most influenced bymusic [17,
18]. They are also parameters that can easily be extracted from an
Earable, either from a PPG sensor or from a microphone [4, 8, 9].

We computed heart rate using the ECG signal and used the
respiratory frequency (Rf) provided by the Zephyr chest strap. We
also compute theHRV by computing the inter-beat interval from the

Danceability

Energy

Loudness

Tempo

Valence

Acousticness

Instrumentalness

Speechiness

Low level
descriptors Rhythm statistics

Tonal statistics

Spotify Features Essentia Features

MFCCs, ERB bands,
Spectral energy,

Zero crossing rate

BPM, Onset rate,
position of the

beats

Harmonic pitch
class profile,

chords strength

Figure 4: The features extracted from the music.

ECG signal. In addition, we developed a feature related to the rate of
change of the breathing (Rc) by computing the difference between
each consecutive pair of values divided by the time difference. For
each extracted feature, we compute the mean, standard deviation,
minimum, maximum and median. Our overall feature set contains
17 features, each of which is representative of a net change in the
statistical measure of the feature.

2.6 Physiological change prediction
To formalise the relationship between musical features and changes
in physiology, we predict whether a physiological parameter will
increase or decrease upon music listening relative to the baseline.
To achieve this, we train several classifiers and assess their ability to
predict whether the parameter increases or decreases based on the
musical features. The pipeline for this system is presented in Fig-
ure 1. We use the features extracted from the music (Section 2.4) and
apply the Synthetic Minority Oversampling Technique (SMOTE) [5]
as a data augmentation technique and to reduce the class imbal-
ance in the dataset for predictions of physiological changes. We
then apply Z-score standardisation and use this as input to the
classifier. We compare SVM with various kernels, Decision Tree,
AdaBoost, and K-nearest neighbours classifiers. Due to the small
number of participants, we train and test using stratified k-fold
cross-validation with 8 splits.
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3 ANALYSIS
Here now follows an analysis of the performance of EarTune. We
first focus on empirical data analysis. We then aim to predict phys-
iological changes, and finally, we attempt to categorise different
songs. We assess the pipeline’s performance and its applications in
these areas.

3.1 Empirical analysis
To analyse the impact of music on physiology, we first present
boxplots showing the changes in various parameters over all par-
ticipants when listening to music of the three categories: energetic,
calming, and the common song. These boxplots are provided in
Figure 5. From Figure 5(a), we see that for the mean breathing rate,
the median value is lower for the calm condition than the energetic
condition. We also see a much larger range of breathing rates and
durations in the energetic condition. Interestingly, both the ener-
getic and calm have negative median breathing rates, implying that
the breathing rate decreases while listening to a preferred song
compared to a resting period. However, the median breathing rate
of the common song is much higher than the baseline implying that
the breathing rate increased compared to the baseline. In Figure 5(b),
we see that the meanHRV increases more for the calm scenario than
the energetic but both increase compared to the baseline. The mean
and standard deviation (std) in heart rate (Figures 5(c) and 5(d))
have consistent patterns where the energetic category shows pos-
itive median values and a narrower spread than the calm. Under
calm, the median values for both are negative showing a decrease
compared to the baseline. Interestingly, the common song shows
a very narrow range in the standard deviation of heart rate and
a much narrower range in the mean heart rate, showing that the
non-preferred song does not impact the heart rate as much as the
preferred song compared to the baseline.

Energetic Calm Common
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

(a) Mean respiratory frequency

Energetic Calm Common2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5

(b) Mean HRV

Energetic Calm Common
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

(c) Mean HR

Energetic Calm Common2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

(d) Standard deviation in HR

Figure 5: Boxplots showing the changes in physiological parameters
over all participants with various music types.

Therefore, it is evident that changes in physiology occur due
to listening to music of different subjective categorisations. It is
also clear that listening to a new song, or a non-preferred song,

alters physiology differently to preferred music. However, further
analysis is required to identify whether this is the effect of non-
preferred music listening, or whether the musical features of this
song are significantly different from the other clusters, making this
song fall into a third, undefined, emotional category. We also leave
clustering this song with the user’s other music for future work.

3.2 Predicting changes in physiology
Overall, the best classifier is the decision tree classifier which pre-
dicts changes in physiology with an overall balanced accuracy of 0.7.
However, upon further analysis of the results, we see that different
classifiers achieve different performances for the four physiological
parameter sets. This is shown in Table 1, where it is evident that
decision tree has the best performance for HRV, Rc and respiratory
frequency. However, the best results for heart rate are achieved us-
ing the k-nearest neighbours (KNN) classifier. It must be noted that
using the decision tree classifier, balanced accuracy for heart rate
prediction is 0.53, which is not a significant performance decline to
that obtained with the KNN.

From Table 1, it is evident that not all physiological changes
can be accurately predicted based on music features. Respiratory
frequency (its mean, median, minimum, maximum and standard de-
viation) are all directly influenced by musical features and changes
can be accurately predicted. However, for heart rate and HRV, over-
all, we do not achieve results that are significantly better than a
random guess.

Table 1: Best classification results per physiological feature
set.

Parameter set Classifier Balanced
Accuracy

Heart rate KNN 0.58
HRV Decision Tree 0.54

Rate of change of breathing Decision Tree 0.77
Respiratory frequency Decision Tree 1

We further break this down in Figure 6, where we provide the
accuracy of predicting each physiological parameter based on the
best-performing classifier for that parameter set from Table 1. Here
we see that, again, we achieve good performance in predicting the
breathing-related features, but worse performance for the heart-
related features. We see that no HRV-related feature achieved a
classification accuracy above 56%, showing that inter-beat interval
was not directly affected by the extracted musical features. Accord-
ing to Figure 5(b), there is a change in the distribution of HRV values
with different music listening conditions. However, we see that both
calming and energetic music results in an increased median HRV
from the baseline, and there is little change in the minimum HRV
with music listening. As such, we can conclude that listening to
preferred music increases the inter-beat interval, irrespective of
whether the listener finds it calming or not and irrespective of the
music features.

We achieve better performance on the heart rate-related met-
rics, with the worst performance being achieved on the standard
deviation of the heart rate. From Figure 5(d), we see that again
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the median of the standard deviation in heart rate changes sign
based on the song condition, however, the minimum and maximum
remain fairly consistent. Thus, it is expected that these outliers
in the dataset lead to ambiguities in the dataset, resulting in poor
classification results.
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Figure 6: Classification performance per parameter using the best
classifier for each parameter group.

3.3 Predicting song categorisation
Finally, we try to assess whether it is possible to predict the user’s
categorisation of the song based on the physiology, musical fea-
tures and a combination of both. We present the results of this
classification using a decision tree classifier in Figure 7. When us-
ing only the changes in physiology, we achieve a 50% accuracy
in predicting whether the user finds the song to be calming or
energetic. Using only the musical features, this increases to 70%.
Thus, it is evident that while the musical features are more related
to the user’s categorisation than their changes in physiology, nei-
ther achieves excellent results in isolation. However, when using a
combination of the physiological changes and the musical features,
we can predict the categorisation with an excellent accuracy of
92%. This indicates that musical features alone are not enough to
understand how a piece of music makes a person feel, but that
when viewed in combination with how their physiology changes
while listening, we are able to predict the emotional response to
the song.
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Figure 7: Results of predicting the song categorisation.

4 RELATEDWORK
Limited work exists on profiling music with wearables based on
physiological changes. Most of the body of research is on music
recommendation systems, some of which use physiological signals.
[1] recommends music based on emotion inferred using physio-
logical sensors on wearables, and [11] recommend music based on
user personality and physiological signals. However, these both
require multiple sensors which are not present in commodity wear-
ables, such as GSR sensors. [10] combine user context (i.e., activity,
weather) with heart rate to predict mood and thus whether the
user will enjoy the song or not. However, the authors did not con-
sider user’s preexisting music preferences, which is very important
in a person’s physiological response to music. The authors also
used only heart rate without incorporating other physiological pa-
rameters, and found that heart rate did not significantly improve
performance.

Other works recommend music based on limited physiological
data, such as [7] who select music with a tempo that matches
walking pace which was determined using an accelerometer. [6, 13]
used heart rate sensors on wearables to detect heart rate, and then
recommend music which will adjust the user’s heart rate back to
a target. However, these only focus on heart rate and tempo, and
do not consider any other features of music. They also do not take
into account the user’s subjective feeling about the piece of music
which is essential in delivering music that is satisfying to the user.

Therefore, no works have looked at the direct link between
changes in physiology and musical features and tried to link these
without considering emotion or mood. Additionally, no works have
looked at predicting the feeling a song evokes in a user based on
physiological changes.

5 DISCUSSION AND CONCLUSION
In this work, we presented EarTune, an analysis of the impact of
music listening on changes in physiology and a user’s subjective
categorisation of a piece of music. We found that musical features
have a significant impact on breathing rate and its rate of change.
Musical features are less strongly linked to heart rate and HRV.
However, these findings should be further validated on a large
dataset of more participants to ensure generalisability of the find-
ings. An aspect left unexplored is the impact of music listening on
longer-term changes in heart rate and HRV, since we only analysed
the last 30 seconds of the song. We also leave exploring whether
there is a time lag between music listening and changes in heart
rate for future work. Through our analysis, we have also found that
by using musical features and changes in physiological features,
it is possible to accurately predict whether a song makes a user
feel calm or energised. This valuable finding forms the first step
towards achieving our ultimate goal: a system which can select
specific music for a user based on the user’s context (i.e., during
exercise, a user will want an energetic song), or based on a user’s
mood (i.e., when stressed, a user will want a calming song). We en-
vision this system being developed onto sensor -equipped earbuds
which will serve a dual purpose of playing the music to the user,
and also of profiling their changes in physiology.
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