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Abstract— Uncertainty quantification is critical for ensuring
the safety of deep learning-enabled health diagnostics, as it
helps the model account for unknown factors and reduces
the risk of misdiagnosis. However, existing uncertainty quan-
tification studies often overlook the significant issue of class
imbalance, which is common in medical data. In this paper,
we propose a class-balanced evidential deep learning framework
to achieve fair and reliable uncertainty estimates for health
diagnostic models. This framework advances the state-of-
the-art uncertainty quantification method of evidential deep
learning with two novel mechanisms to address the challenges
posed by class imbalance. Specifically, we introduce a pooling
loss that enables the model to learn less biased evidence
among classes and a learnable prior to regularize the poste-
rior distribution that accounts for the quality of uncertainty
estimates. Extensive experiments using benchmark data with
varying degrees of imbalance and various naturally imbalanced
health data demonstrate the effectiveness and superiority of
our method. Our work pushes the envelope of uncertainty
quantification from theoretical studies to realistic healthcare
application scenarios. By enhancing uncertainty estimation
for class-imbalanced data, we contribute to the development
of more reliable and practical deep learning-enabled health
diagnostic systems.1

Index Terms— Uncertainty quantification, deep learning,
trustworthy health diagnostics, class imbalance

I. INTRODUCTION

Deep learning has demonstrated impressive performance
across various domains, but its lack of interpretability due
to black-box models has hindered its trustworthiness. Un-
certainty quantification plays a vital role in addressing this
concern by allowing deep neural networks to recognize and
communicate their level of confidence. Uncertain-aware
models are credible as they are aware of what is known and
what is unknown. This capability is particularly crucial in
safety-critical applications like health diagnostics [1], [2].
As depicted in Fig. 1, defensibly quantifying uncertainty
for automatic diagnostics, if achieved, will greatly enhance
the reliability of deep learning in real-world medical
applications.
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Fig. 1. An uncertainty-aware deep learning driven health diag-
nostics system. This system aims to provide uncertainty estimation
alongside the diagnosis for each instance. A low uncertainty value
indicates a confident automatic diagnosis where the model outputs
can be trustworthy. However, if the prediction exceeds the model’s
capabilities and the uncertainty is relatively high, the instance
will be referred to doctors for clinical confirmation. Furthermore,
instances with extremely high uncertainty are likely to stem from
data sources outside the training data distribution, such as variations
in data collection devices, data corruption, or unseen pathology not
encountered during training. In such cases, the system will ignore
the instances or require data recollection.

Health diagnostics inherently involves classification
tasks, where deep neural networks extract features from
the inputted medical data to predict the most likely
associated disease category. In the past decade, various
approaches have been proposed to quantify the classifi-
cation uncertainty [3], [4], and some methods have been
explored on specific medical datasets [5]–[10]. For instance,
Pacheco et al. compared several uncertainty estimation
methods on skin lesion images to detect the out-of-
distribution inputs [9], and Kang et al. explored statistical
uncertainty entropy to identify noisy physiologic signals
that the model classifies incorrectly [10]. However, there is
a notable lack of comprehensive studies that evaluate the
robustness and generalizability of these approaches across
various medical modalities and architectures. Addressing
this gap is crucial to determine the practical viability
and applicability of uncertainty quantification methods
in diverse healthcare settings.

Furthermore, we notice that a considerable issue, class
imbalance, is often overlooked in most existing works, even
though it is prevalent in medical data and can significantly
impact the quality of estimated uncertainties. Class im-
balance refers to a substantial disparity in the number
of samples between different classes. Particularly in med-
ical datasets, due to the low prevalence rate of certain
diseases, it is usually more challenging to gather enough
samples from unhealthy participants compared to healthy
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controls [11]. For instance, in the largest skin lesion image
datasets [12], there are six pathologies covered, with the
largest class accounting for 67.1% and the smallest class
accounting for only 1.1% of the entire dataset. The limited
number of samples in the minority classes, representing the
less prevalent unhealthy categories, poses a challenge for
the model to accurately capture the underlying patterns
and variances associated with those disease categories.
Consequently, the uncertainty estimates for the minority
classes may be mis-estimated, leading to an erroneous
sense of confidence in the diagnoses. To the best of our
knowledge, there is limited research that considers the
impact of data imbalance when estimating uncertainty
for deep health diagnostics. Xia et al. proposed a method
that involves re-sampling the data to generate balanced
data bags for ensemble learning, resulting in accurate
predictions and high-quality uncertainty estimation for the
binary COVID-19 detection problem [13]. However, this
method is infeasible and inefficient for multi-class health
diagnostics. In light of this, this paper aims to address
the challenge of uncertainty-aware modelling for various
class imbalances to improve the accuracy and reliability
of deep learning-driven health diagnostics.

Considering that among various uncertainty quantifi-
cation methods, the recently emerged evidential deep
learning (EDL) becomes a standout due to its impressive
efficiency and effectiveness [14]–[17]. The core principle
of EDL is to learn the evidence for classification, which
will be mapped into a Dirichlet distribution over the
categorical prediction for uncertainty quantification. As
EDL solely modifies the output of a classification model
without altering the feature-extracting architecture, it
also offers the advantage of leveraging pre-trained models
to quantify uncertainty, particularly in scenarios with
limited medical data availability [18]. All those properties
make EDL a promising solution for health diagnostic
uncertainty quantification, and herein in our study, we
will focus on EDL approaches.

Despite showing great promise, most investigations and
evaluations of EDL rely on well-curated datasets and bal-
anced machine learning benchmarks such as CIFAR10 and
CIFAR100 [17], [19], [20], leaving the impact of medical
data unclear. To gain deeper insights into the behaviour
of EDL, we conducted an analysis using an imbalanced
dataset to identify potential confounding factors. This
revealed a negative association with the quality of uncer-
tainty measurements. Consequently, our findings indicate
that EDL would also be negatively affected by class
imbalance mainly for two reasons: i) the uniform empirical
loss across all samples could introduce classification bias,
and ii) EDL assumes a uniform distribution across all
classes, which does not reflect the real data distribution.
Consequently, with severe class imbalance, EDL may
produce imprecise Dirichlet distributions, resulting in
low uncertainty quality. This can lead to confident but
incorrect diagnoses, while inadequate uncertainty quan-
tification prevents clinicians from correcting automatic
diagnoses.

The analysis emphasizes the importance of addressing
the limitations posed by the uniform empirical loss and
uniform prior distribution loss in improving EDL on
imbalanced medical data. This paper presents two novel
mechanisms to tackle this problem. Firstly, we propose
a customized class-level pooling loss to alleviate bias in
the classification evidence. Additionally, we advocate for
the adoption of a learnable prior that is regulated by the
class distribution, thereby enhancing the learning process
for minority classes. Through comprehensive experiments,
we demonstrate that our proposed approach achieves fair
uncertainty estimation for all classes, thereby paving the
way for more reliable automatic diagnostic systems.

The main contributions of this paper are summarized
below,

• We shift the attention of uncertainty quantification
from well-curated data to real-world health data with
skewed class distribution, and we provide a system-
atic uncertainty study on various health diagnostics
scenarios.

• To address the challenges caused by class imbalance,
this paper proposes a class-balanced EDL framework.
This framework incorporates the start-of-the-art un-
certainty quantification method EDL with two novel
mechanisms to produce fair and reliable uncertainty
estimates for all health conditions.

• We evaluate our class-balanced EDL framework on
three real-world health diagnostic tasks with different
data modalities and model architectures. Our method
presents superior performance against the state-of-
the-art baselines for class imbalance and uncertainty
quantification. Particularly, we improve the accuracy
of misdiagnosis identification and out-of-training-
distribution detection by up to 16.1%.

II. PRELIMINARY

A. Problem Definition
In this paper, we target diagnostic classification tasks:

assuming a training dataset D = {X(i), y(i)}Ni=1 is avail-
able, where X(i) denotes the input, y(i) corresponds to a
disease type among C total categories and N is the number
of training samples. Nc presents the number of samples
for class c. We consider a skewed training distribution and
thus, Nc varies among classes. We term class c a majority
class if Nc > N/C, otherwise a minority class. The task is
to learn a neural network parameterized by θ that predicts
ŷ(i) with an uncertainty measurement û(i) for any given
sample X(i) from the testing set.

B. Limitation of Softmax Probability
Despite the prevalence of estimating uncertainty di-

rectly from the Softmax layer in deep learning [21], this
approach exhibits significant limitations when compared
to more advanced uncertainty estimation methods such as
EDL. Specifically, softmax layer aims to transfer the logits
z(i) into categorical probabilities p(i) = [p

(i)
1 , p

(i)
2 , ..., p

(i)
C ],

where p
(i)
c = ez

(i)
c /

∑C
j=1 e

z
(i)
j and

∑C
c=1 p

(i)
c = 1, for
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a given input X(i). The predicted entropy of p(i) as
formulated by, Entropy(p(i)) =

∑C
c=1 −p

(i)
c · log(p(i)c ), is

commonly used as the uncertainty measurement, as it
indicates the confidence of the prediction. However, p(i)

is a point estimation that cannot capture the uncertainty
inheriting from the model [22]. Besides, the probability
yielded by softmax is usually over-confident as it always
predicts a close set for any given inputs, while the
real world is open with unseen classes [23]. Polished
English: For instance, the uncertainty of a Softmax model,
previously trained to distinguish between individuals with
Asthma and healthy individuals, may not be sufficient to
identify a new disease beyond Asthma when it occurs.
C. Evidential Deep Learning

Different from Softmax, EDL leverages Dirichlet distri-
bution q(i) – the distribution over p(i), to achieve predic-
tion and uncertainty quantification simultaneously [24],
[25]. The Dirichlet distribution is used because it is the
natural conjugate posterior of multinomial distribution
(i.e., the probability p(i) can be regarded as a multinomial
distribution). Underpinned by the Bayesian rule, EDL
aims to capture the classification evidence l(i) by the
deep learning model and then transform a uniform prior
Dir(1) into the posterior q(i) = Dir(α(i)), with α(i) = 1+
l(i) [25]. More specifically, the posterior q(i) = Dir(α(i))

is parameterized by α(i) = [α
(i)
1 , α

(i)
2 , ..., α

(i)
C ] for C classes,

where α(i)
c = 1 + l

(i)
c .

The posterior Dirichlet distribution can be viewed as
an infinite ensemble of point estimations p(i). Therefore,
EDL enables a better-calibrated way of quantifying epis-
temic uncertainty compared to traditional softmax-based
deep learning [14], [15]. Additionally, the expectation of
probability p̂(i) presents the average predictive confidence
which reflects the aleatoric uncertainty. EDL is also
able to capture the distributional shift: if no remarkable
evidence can be modelled for a given input, the posterior
αc, ∀c ∈ C will approach 1, i,e., the prior. Overall, given
an input X(i), an EDL model fθ outputs distribution
q(i) = Dir(α(i)) with the predictive probability p̂(i),
categorical prediction ŷ(i) and uncertainty measurement
of Differential Entropy (DE(i)) inferred as below,

α(i) = 1 + l(i),

p̂
(i)
c = E[p(i)c ] =

α
(i)
c

α
(i)
0

,

ŷ(i) = argmax
c

E[p(i)c ],

DE(i) = E
p(i)∼q(i)

[Entropy(p(i))],

(1)

where α
(i)
0 =

∑K
c=1 α

(i)
c . DE reflects how the energy is

distributed, i.e., the “peakedness”, in the Dirichlet distri-
bution. A larger DE corresponds to a higher uncertainty
of a prediction. Some illustrative examples of the posterior
Dirichlet distributions are given in Fig. 2.

EDL can be adapted to any neural network architecture
by simply replacing the softmax layer with a plunge-
in Dirichlet distribution estimation layer on the output

Fig. 2. Three-class Dirichlet distribution. (a) and (b) point to the
same predicted class, but (a) is sharper so it is more confident while
(b) is more uncertain with a larger DE. (c) shows an example that
is certain to none of the classes.

side [14], [15]. Following the latest literature [16], [26], the
following objective is used to optimize θ,

min
θ

L =
1

N

N∑
i=1

L(i),

L(i) = Ep(i)∼q(i) [C(p(i), y(i))] + λ · L(i)
r ,

(2)

where C denotes the cross-entropy, i.e., C(p(i), y(i)) =

− log p
(i)

y(i) for sample i, and L(i)
r = KL[(Dir(α(i))||Dir(1)]

denotes a regularization for each posterior q(i).
Given the above characteristics, EDL is more effective

than Softmax in quantifying the uncertainty arising from
both data and model, culminating the predictive proba-
bilities, and further being aware of the distributional shift.

III. IMPACT OF CLASS IMBALANCE ON EDL
In this section, we conduct empirical and theoretical

analyses of EDL to uncover its limitations in handling
class imbalance presented in the data.

A. Empirical Observation
To effectively showcase the influence of class imbalance

on the performance of EDL, we conducted experiments
using a benchmark dataset with varying degrees of class
imbalance. Specifically, we implemented an image classifi-
cation task using the EDL loss (Eq. 2) and compared the
results obtained with both balanced and imbalanced data
through downsampling (after down-sampling, the data
exhibited a skewed step distribution, mimicking class im-
balance). For the experiments, we utilized the VGG model
to classify the CIFAR10 dataset [27]. Specifically, VGG16
pre-trained by ImageNet is used as the backbone model,
followed by a linear layer to output the parameters α to
formulate the Dirichlet distribution. The data distribution
and results of our experiments are presented in Fig. 3.

As it can be observed in Fig. 3(a), with balanced
training data, for all 10 classes, the EDL quantifies
higher uncertainty for incorrect predictions than correct
predictions within each class. This suggests that quantified
uncertainty can reliably reflect the confidence of the
model. However, this no longer holds with a skewed
distribution as displayed in Fig. 3(b): incorrect predictions
from minority classes, e.g., class 1 and 2, manifest very low
uncertainty. This evidence verifies our concern that the
EDL is vulnerable in the class imbalance scenario, and a
comprehensive comprehension of the underlying principles
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and viable solutions should be proposed to enhance EDL
for imbalanced datasets.

B. Theoretical Analysis
In addition to empirical analysis, we also draw on

theoretical insights to systematically explain the reasons
behind the failure of EDL in the presence of class imbal-
ance.

Lemma I. The across-sample empirical loss Eq. 2 induces
the bias in EDL.
Given C classes, the objective in Eq. 2 can be rewritten
as,

min
θ

L =
1

N

C∑
c=1

∑
y(i)∈c

L(i)

=

C∑
c=1

Nc

N
·

1

Nc

∑
y(i)∈c

L(i)

=

C∑
c=1

Nc

N
· Lc,

(3)

where Lc presents the average loss for class c. It can
be noted that class-averaged loss Lc is weighted by the
proportion of the samples in the training set. Herein, the
object tends to prioritize optimizing Lc for the majority
classes. Because of the relatively small Nc, misclassifica-
tions or over-confident posteriors from minority classes
could be under-looked, leading to imprecise estimation of
classification evidence l (see Eq. 1). Particularly, when Nc

for minority classes is extremely small, which is common
for many realistic health applications where rare classes
exist, the learned evidence can be more biased. As a
consequence, the quantified uncertainty parameterized by
α could be less reliable for the minority classes due to the
lack of training data.

Lemma II. The uniform prior is not feasible for EDL in
the presence of imbalanced data.
From Sec. II-C, EDL assumes a uniform Dir(1) as a
prior, which indicates an equal likelihood for all classes
if the same amount of evidence has been observed. The
regularization of the posterior, i.e., L(i)

r in Eq. 2, also
imposes a uniform smoothing across all classes, ignoring
the varied learning difficulty among classes. This may not
be optimal in the presence of imbalanced data, particularly
when the minority classes are underrepresented with a
few samples. In traditional softmax-based deep learning,
classification thresholds can be adjusted (i.e., not the same
threshold for every class) to allow some marginal samples
to be classified into minority classes [28], [29]. Similarly,
finding a suitable prior that can better regularize the
posterior can be helpful in EDL.

IV. OUR METHOD

Built upon the above discussions, we now present our
novel method to enable EDL for imbalanced data. Our ef-
forts include two aspects: (1) learning less biased evidence
and (2) seeking a better prior, which are introduced below,

(a) Balanced data yields reliable uncertainty estimates.

(b) Imbalanced training data leads to poor uncertainty estimates
for the minority classes.

Fig. 3. Uncertainty quantified by EDL for CIFAR10 classification.
The top subfigures present the training data distribution, and the
bottoms show the uncertainty for correct and incorrect predictions
within each class (a larger value indicates that the prediction is less
certain). The red line represents an uncertainty threshold that leads
to the highest accuracy in misclassification identification.

Mechanism I. Class pooling loss. As discussed in Lemma
I, the uneven distribution of samples across classes is
the devil that introduces bias into the model, leading to
unequal learning speeds for the classes. To overcome this
issue, we propose to give equal attention to all classes
no matter the number of training samples. To achieve
this, we leverage a class-level pooling loss that is first
calculated within each class and then averaged across
classes. Specifically, L′ in Eq. 2 will be replaced by,

L′ =
1

C

C∑
c=1

1

Nc

∑
y(i)∈c

L(i), (4)

where Nc is the cardinality of class c. Thereby, in contrast
to Eq. 3, L′ is class distribution agnostic. In other words,
Nc/N is fixed and cannot be approached to 1/C. Just
rephrase as ’we mitigate the bias by substituting the class-
dependent weight Nc/N with a uniform weight of 1/C.

Mechanism II. Adaptive prior. Since the uniform prior
assumption has limited capacity as discussed in Lemma II.,
we propose to replace the uniform prior with a trainable
prior parameterized by β = [β1, β2, ..., βC ]. Learning the
classification evidence through the neural network usually
needs more data and could be biased, but optimizing the
posterior from the prior (i.e., via L(i)

r ) could be more
helpful, particularly when the training data is limited.
A good prior should consider the class distribution of the
training data, and compensate for the class skew to ease
the learning of the posterior. Herein, we propose that β
can mimic the reversed class proportion, termed by η =
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[N/N1, N/N2, ...N/NC ] with ηc = N/Nc. Furthermore,
although it is meaningful to use η as β, we do not fix
the value but use a trainable prior: this allows the prior
with more optimization space considering the varying
learning difficulty for different classes. To achieve this,
another term that measures the KL-divergence between
the two categorical distributions parameterized by β and
η, formulated by,

L′
p = KL[Cat(β)||Cat(η)] =

C∑
c=1

βc log
βc

ηc
, (5)

will be added to the objective. Correspondingly, the
regularization term in Eq. 2 becomes the KL-divergence
between the posterior and the trainable prior to ensure
“fidelity-to-prior” [30]. The prior can be jointly optimized
by the loss as formulated in Eq. 4. We term the new
posterior parameterized by α′, and the new regularization
for the posterior is denoted by L′(i)

r , which can be further
derived by,

L′(i)
r = KL[Dir(α

′(i))||Dir(β)]

=

∫
Dir(p|α

′(i)) log
Dir(p|α′(i))

Dir(p|β)
dp

=

∫
Dir(p|α

′(i))
(
logDir(p|α

′(i))− logDir(p|β)
)
dp.

(6)

Since the integration can be derived by
digamma function ψ and gamma function Γ, i.e.,∫
Dir(p|α) logDir(p|α)dp =

∫
Dir(p|α)

[
log Γ(α0) −∑C

c=1 log Γ(αc) +
∑C

c=1(αc − 1) log p
]
dp = log Γ(α0) −∑C

c=1 log Γ(αc) +
∑C

c=1 αc(ψ(αc) − ψ(α0)). The closed
form of L′(i)

r is written as,

L′(i)
r = log Γ(α

′(i)
0 )−

C∑
c=1

log Γ(α
′(i)
c )− log Γ(β0)+

C∑
c=1

log Γ(βc) +
C∑

c=1

(α
′(i)
c − βc)(ψ(α

′(i)
c )− ψ(α

′(i)
0 ))],

(7)

where β0 =
∑C

c=1 βc.

Overall objective. Integrating Mechanism I. and II., with
Eq. 2, 4, 5, and 7 merged into the overall optimization
loss for class-balanced EDL as,

min
θ,β

L′ =
1

C

C∑
c=1

1

Nc

∑
y(i)∈c

L′(i) + µ · L′
p,

α′(i) = β + l(i),

L′(i) = Ep(i)∼Dir(α′(i))[C(p
(i), y(i))] + λ · L′

r
(i),

L′(i)
r = KL[Dir(α′(i))||Dir(β)],
L′
p = KL[Cat(β)||Cat(η)],

(8)

where hyper-parameters λ and µ trade off the clas-
sification, the regularization of posterior L′

r, and the
regularization of prior L′

p. It is now easy and efficient
to calculate the loss without sampling p(i) from q(i) to

Fig. 4. Examples of the in and out-of-distribution testing samples
for the three tasks.

obtain the expectation, with the closed form specified by,

L′ =
1

C

C∑
c=1

1

Nc

∑
y(i)∈c

{ψ(α′(i)
0 )− ψ(α

′(i)
y(i) ) + λ · [log Γ(α′(i)

0 )

−
C∑

c=1

log Γ(α
′(i)
c )− log Γ(β0) +

C∑
c=1

log Γ(βc)

+
C∑

c=1

(α
′(i)
c − βc)(ψ(α

′(i)
c )− ψ(α

′(i)
0 ))]}+ µ ·

C∑
c=1

βc log
βc

ηc
,

(9)

where α′(i)
0 =

∑C
c=1 α

′(i)
c , β0 =

∑C
c=1 βc, ψ is the digamma

function and Γ denotes the gamma function.

V. EXPERIMENTS ON REALISTIC APPLICATIONS

To validate the effectiveness of our class-balanced EDL
for real-world health diagnostics, we employ three medi-
cal tasks for experiments. The datasets used encompass
various modalities, and all of them exhibit severe class
imbalance, making them ideal test beds for the evaluation.

A. Datasets and Tasks
We conducted extensive experiments on three medical

tasks with different data modalities. We split each dataset
into a training and a testing set. The training set including
a part for validation is used for model parameter learning,
while the testing set is leveraged to report the perfor-
mance. For each task, we also included two OOD testing
sets, i.e., near OOD and far OOD. The near OOD set has
the same classes as the training data but was collected
with a different protocol, thus presenting a semantic shift,
while the far OOD set contains similar inputs to unseen
classes. The details of those datasets are elaborated below.
Task 1: Respiratory abnormity detection. We explored
the potential of lung sounds for detecting respiratory ab-
normalities by distinguishing abnormal lung sounds from
healthy sounds, leveraging the state-of-the-art ResNet34-
based acoustic model [31].

• (ID) ICBHI 2017 Respiratory Challenge published
a dataset collected from multiple microphones and
stethoscopes [32]. The total 6,898 samples from
126 patients cover four classes: normal lung sounds
(52.8%), crackle only (27.0%), wheeze only (12.9%),
and both crackle and wheeze (7.3%).
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TABLE I
A SUMMARY OF REAL APPLICATION DATASETS. #TRAIN IS THE ORIGINAL TRAINING DATA SIZE, WHICH IS SPLIT INTO TRAINING AND VALIDATION

FOLDS WITH DIFFERENT SEEDS. #TEST IS THE TESTING SIZE. C IS THE NUMBER OF CLASSES AND D IS THE INPUT DATA DIMENSION.

Task Dataset OOD Dataset
Name Backbone Modality Name #Train #Test C Ratio (%) D Near OOD Size Far OOD Size
Task 1 ResNet34 Audio ICBHI2017 4,274 2,641 4 52.8/27.0/12.9/7.3 1×32,000 Stethoscope 336 ARCA23K 2,264
Task 2 DenseNet121 Image HAM10000 7,206 2,809 7 67.1/11.1/11.0/5.1/3.3/1.4/1.1 3×600×450 ISIC2017 1,824 CIFAR-10 10,000
Task 3 FCNet ECG ECG5000 4,500 500 5 58.4/35.3/3.9/2.0/0.5 1×140 ECG200 200 FetalECG 1,965

• (Near OOD) A similar audio dataset named Stetho-
scope consists of 336 normal, crackle, and wheeze
audio samples [33]. This dataset was collected via
a 3M Littmann electronic device and thus is different
from ICBHI. The demographics of this dataset and
ICBHI are also different, so we used it as ICBHI’s
co-variate shift counterpart.

• (Far OOD) ARCA23K is a dataset of labelled sound
events originating from Freesound, and each clip
belongs to one of 70 typically audio classes including
music, human sounds, animal sounds, etc [34]. We
used the validation set containing 2,264 clips. This
dataset contains different classes compared to ICBHI.

Setting. For the ID data, we followed the official patient-
independent training and testing splits of the Challenge.
Samples from 47 patients were used for testing, while
for the rest of the patients, we randomly divided them
into five folds and held out one fold per run to conduct
five-fold cross-validation. For all ID and OOD datasets,
audio recordings were re-sampled to 4KHz and divided
into 8s clips. The clips were then transformed into Mel-
spectrograms as the inputs of the model.

Task 2: Skin lesion screening. The classification of skin
lesions was examined using an image classification model
based on DenseNet121 [9].

• (ID) HAM10000 contains 10,015 dermatoscopic skin
tumour images taken from multiple devices and de-
mographics [12]. The image size is 600×450. The
skin condition is labelled as one of the following
classes: melanocytic nevi (67.1%), melanoma (11.1%),
benign keratosis-like lesion (11.0%), basal cell carci-
noma (5.1%), actinic keratoses (3.3%), vascular lesion
(1.4%), or dermatofibroma (1.1%).

• (Near OOD) Another skin lesion dataset with 2,000
high-resolution varied-size images published by ISIC
2017 was used [35]. It was collected by another insti-
tute with a varied device from HAM10000, therefore
we regard it as the near OOD.

• (Far OOD) The image classification benchmark
CIFAR-10 with 10 non-skin classes was utilized as the
far OOD. We used this data to simulate the scenario
when a non-clinician image is input into the model.

Setting. For ID data, 30% was held out as the testing set,
and five-fold cross-validation was implemented: four-fifths
of the remaining 70% of the data for training and one-fifth
for validation per running. Images in ISIC2017 datasets
were resized uniformly to 767×1,022 before feeding into
the model.

Task 3: Heart failure prediction. The detection of cardio-
vascular diseases was investigated using electrocardiogram
(ECG) data with the one-dimensional convolutional neural
network FCNet [36].

• (ID) ECG5000 is a 20-hour long one-channel ECG
dataset, which was split and interpolated into equal-
length (140) heart beats [37]. It consists of five classes:
58.4% are normal, 35.3% have heat failure typed R-
on-T phenomenon, 3.9% PVC (Premature Ventricular
Contraction), 2.0% ST (ST Segment Elevation), and
0.5% UB (Upright Biphasic T-wave).

• (Near OOD) Another dataset consisting of 200 ECG
recordings with a length of 178 was used as the near
OOD. This data was acquired through a method
different from ECG5000 and contains two classes of
normal heartbeats and Myocardial Infarction [38].

• (Far OOD) A non-invasive fetal ECG dataset consists
of 1,965 heartbeats with a length of 750 [39]. Sensors
were positioned on the mother’s abdomen to detect
and record the electrical signals produced by the fetal
heart. Fetal ECG typically exhibits lower amplitude
compared to that of adults, making it suitable as the
far ODD dataset in our study.

Setting. We utilized a subset of 500 samples in the ID
ECG5000 datasets for testing and split the rest into five
folds uniformly for cross-validation.

For the aforementioned three tasks, the used datasets
and model backbones are summarized in Table I. Exam-
ples of the in and out-of-distribution testing samples are
given in Fig. 4.

B. Baselines
The backbone model with Softmax probability, termed

as Vanilla, is implemented for each task as a basic baseline.
Besides, we compare our method to the state-of-the-art
long-tailed learning methods and uncertainty estimation
methods, respectively. For the former group, we include
typical re-balancing approaches: weighted cross-entropy
loss (WL) [40] and random-over-sampling (ROS) [41]. We
also employ a recently proposed supervised deep clustering
method (SDC) [42]. SDC first learns the class embeddings
by maximizing cluster separation, and then uses a novel
triplet loss to discriminate the learned embeddings. This
two-stage learning protocol improves the reliability against
imbalanced training data. For the latter group, we first
report the performance of EDL optimized by Eq. 2, which
is termed as Vanilla EDL without re-balancing the class.
We also compare EDL with the other two uncertainty
quantification approaches. The first approach is the Monte
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Carlo Dropout method (referred to as MCDP) [22], [43],
which captures model uncertainty by keeping dropout
activated during testing. The other approach is deep en-
semble learning (referred to as Ensemble), which quantifies
uncertainty based on the outputs of multiple models [13],
[44]. Although these methods have shown promise in well-
curated data, they were not specifically designed for imbal-
anced data. To ensure a fair comparison, we implemented
them using the same data augmentation techniques as
EDL, namely MCDP+ROS and Ensemble+ROS. Instead
of using the DE metric, the uncertainty measurement
for non-EDL methods was the Entropy of the predictive
probabilities [45].

For all the methods in this paper, we used a learning
rate of 10−4, the Adam optimizer, a batch size of 64, and
a maximum epoch of 200. The best model based on the
highest accuracy on the validation set was saved. ResNet-
34 and DenseNet-121 were initialized with pre-trained
checkpoints, while other parameters were randomly initial-
ized. The training stops with a model saved when the best
performance on the validation set is achieved. We run each
experiment 5 times with different random seeds and report
the average performance. All models were implemented
using PyTorch 1.16, and we trained the models on a single
Nvidia GPU with 64GB memory.

C. Metrics
For evaluation, we report accuracy-centric metric Rec

and uncertainty-centric metrics Brier and ECE. Rec is
the macro-recall on the testing set, denoted by, Rec =
1
C

∑C
c=1ACC(ŷ

(i)|y(i) = c). Brier, short for Brier Score,
measures the accuracy of predicted probabilities. Specif-
ically, the Brier Score for a sample is computed as the
squared error of a predicted probability vector, p(i),
and the one-hot encoded true response, ỹ(i). That is
Brier(i) = 1

C

∑C
c=1(p

(i)
c − ỹ

(i)
c )2. We report the average

Brier Score across the whole testing set, denoted by,
Brier = 1

C

∑C
c=1

1
Nc

∑
y(i)=cBrier

(i). Rec and Brier were
calculated at the macro level. We also report ECE, short
for Expected Calibration Error, to measure the corre-
spondence between predicted probabilities and empirical
accuracy [46]. We partitioned the estimated confidence
into M = 10 equal bins on the test dataset and calculated
the ECE as follows: ECE =

∑M
m

|Bm|
Ntest

|ACC(Bm) −
conf(Bm)|, where bin Bm covers the confidence interval
(m−1

M , m
M ]. ACC(Bm) and conf(Bm) are the ACC and the

average predictive confidence for the samples whose pre-
dictive confidence falls within the bin Bm. Rec evaluates
the overall accuracy of categorical predictions, while Brier
and ECE assess the calibration of predicted probabilities.

We also evaluate two uncertainty measurement-driven
applications: misclassification identification and out-of-
distribution (OOD) detection [19]. We evaluate the per-
formance by AUCm and AUCo for the two tasks, respec-
tively. AUC, short for AUROC (area under the receiver
operating characteristic), is used to measure the accuracy
of classification. We treat the evaluation as a binary
classification task: misclassified/OOD data belongs to the

TABLE II
PERFORMANCE COMPARISON FOR MEDICAL APPLICATIONS. THE

AVERAGE RESULTS OF FIVE RUNS ARE SHOWN. THE BEST RESULTS

ARE HIGHLIGHTED. THE SECOND-BEST RESULTS ARE UNDERLINED FOR

COMPARISON.

Rec↑ Brier↓ ECE↓ AUCm↑ AUCn
o ↑ AUCf

o↑

Task 1: Respiratory abnormity detection
Vanilla 0.256 0.999 0.310 0.587 0.650 0.728
WL 0.401 0.949 0.292 0.594 0.661 0.698
ROS 0.407 0.941 0.301 0.605 0.673 0.742
SDC 0.422 0.902 0.288 0.617 0.664 0.747
Vanilla EDL 0.268 0.983 0.304 0.603 0.655 0.734
EDL+WL 0.389 0.908 0.290 0.621 0.687 0.759
EDL+ROS 0.434 0.878 0.297 0.620 0.700 0.768
MCDP+ROS 0.412 0.933 0.289 0.625 0.690 0.764
Ensemble+ROS 0.431 0.929 0.286 0.628 0.699 0.769
Ours 0.422 0.797 0.163 0.640 0.727 0.785

Task2: Skin lesion screening
Vanilla 0.610 0.538 0.217 0.740 0.695 0.789
WL 0.689 0.457 0.159 0.784 0.665 0.891
ROS 0.727 0.441 0.110 0.801 0.693 0.927
SDC 0.730 0.439 0.112 0.813 0.705 0.927
Vanilla EDL 0.601 0.534 0.214 0.747 0.688 0.803
EDL+WL 0.678 0.511 0.153 0.798 0.694 0.882
EDL+ROS 0.735 0.428 0.105 0.830 0.701 0.896
MCDP+ROS 0.734 0.429 0.103 0.835 0.735 0.949
Ensemble+ROS 0.739 0.420 0.102 0.840 0.735 0.950
Ours 0.763 0.396 0.095 0.854 0.747 0.968

Task 3: Heart failure prediction
Vanilla 0.389 0.690 0.179 0.850 0.782 0.885
WL 0.715 0.480 0.073 0.608 0.690 0.766
ROS 0.717 0.482 0.071 0.597 0.681 0.758
SDC 0.732 0.476 0.073 0.600 0.692 0.770
Vanilla EDL 0.388 0.685 0.175 0.843 0.786 0.887
EDL+WL 0.585 0.521 0.123 0.622 0.788 0.893
EDL+ROS 0.690 0.478 0.062 0.848 0.790 0.920
MCDP+ROS 0.721 0.471 0.067 0.602 0.707 0.772
Ensemble+ROS 0.728 0.452 0.068 0.598 0.708 0.798
Ours 0.778 0.319 0.062 0.911 0.917 0.973

positive class while correctly predicted/ID data is the
negative class. We conduct min-max normalization for
uncertainty measurements on the testing set (for EDL
methods, we use DE, and for other baselines, we use
Entropy), resulting in the normalized values ranging
[0, 1]. Those normalized uncertainty measurements are the
probabilities to calculate AUC. To distinguish between
near and far out-of-distribution (OOD) detection, AUCn

o

and AUCf
o are reported, respectively.

D. Results
Results are summarized in Table II and discussed below.

Task 1. The task involves a 4-class classification problem
with mildly imbalanced data (refer to Table I). The first
observation is that both Vanilla and Vanilla EDL struggle
to perform well, while the re-balancing strategy WL and
ROS significantly improve the Vanilla and Vanilla EDL
across all the metrics. SDC is a strong baseline for class
imbalanced data by ensuring the class margin, but it is still
a deterministic model using Softmax to generate the final
prediction, which indicates that the model could be over-
confident for out-of-distribution data. As proven by the
results, the uncertainty-aware baselines, i.e., EDL+WL,
EDL+ROS, MCDP+ROS, and Ensemble+ROS, generally
perform better for uncertainty-centric metrics. However,
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within those methods, none of them consistently out-
performs the others across all metrics, highlighting the
challenge of achieving accurate diagnosis accuracy and
high-quality uncertainty measurements simultaneously in
real-world applications. We recognize that this difficulty
primarily stems from the heterogeneity of the data, as
the audio recordings were collected using different stetho-
scopes. Thus, an effective uncertainty estimation method
is necessary to accurately quantify the uncertainty from
both the data and the model.

In comparison to the baselines, our class-balanced EDL
approach achieves competitive results in terms of Rec.
Although a Rec of 0.422 is not the best, it is very
close to the best of 0.434. Yet, our method demonstrates
significantly superior uncertainty measurements. Notably,
we have successfully reduced ECE by 43%, indicating that
our model can effectively avoid overconfident detection
of respiratory abnormalities. The accuracy of detecting
misclassifications and OODs is also improved by 2.4%, and
2.1% ∼ 3.9% compared to the second best as underlined
in Table II, respectively.
Task 2. In Task 2, the training data consists of 67.1%
images from healthy subjects, while the remaining data
comprises six other types of lesions, exhibiting a long-
tailed distribution. On this type of data, vanilla methods
(Vanilla and Vanilla EDL) are vulnerable and all other
methods outperform them in terms of classification and
uncertainty quantification.

Among the baselines, Ensemble+ROS achieves the best
performance. However, our class-balanced EDL still ex-
hibits performance gains compared to Ensemble+ROS
for all the metrics. Specifically, we can observe the
improvements of 3.2% in balanced Rec, 5.7% in Brier,
6.7% in ECE, and about 2% in AUCm, AUCn

o , and AUCf
o .

Those suggest our classification is more accurate and our
estimated uncertainty is more useful. It is also worth
mentioning that the Ensemble baseline requires multiple
passes during inference, making it less efficient compared
to our method. These observations empirically validate the
superiority of our methods over the compared baselines.
Task 3. In this task, the physiological data is highly imbal-
anced, with the three minority classes accounting for less
than 10% of the data. From Table II, it can be observed
that with such severe class imbalance, SDC achieves the
highest Rec of 0.732 among the compared methods. While
baselines including EDL+WL, EDL+ROS, MCDP+ROS,
and Ensemble+ROS significantly improve the classifica-
tion performance as measured by Rec, and reduce over-
confident predictions as reflected by Brier and ECE, they
fail to improve uncertainty measurement, i.e., no better
AUCs. Firstly, the second best AUCm, AUCn

o , and AUCf
o

are 0.067, 0.848, and 0.920, showing marginal difference
with 0.843, 0.786, 0.887 of vanilla EDL. Secondly, some
approaches present a decline in AUCs. For example,
Ensemble+ROS almost doubles the Rec but decreases
the AUCm by 29.1%. It is plausible that the baselines
with weighted loss or data augmentation mechanisms can

(a) DE for all testing sets (Vad
is the validation set).

(b) DE for for in-distribution (ID)
testing set.

Fig. 5. Uncertainty distribution measured by DE for heart failure
prediction (Task 3).

effectively reduce bias in classification, but they are unable
to mitigate bias in uncertainty quantification.

Achieving high-quantity uncertainty estimation for this
task is more challenging than the other two tasks, since
Task 3 has smaller training and test data, and the OOD
data shares the closest semantic information with the ID
ECG data. However, even in this very challenging task,
our class-balanced EDL constantly performs well on all
metrics. Significantly, we increase Rec by 6.9%, decrease
Brier by 29.4%, and improve the accuracy of detecting
misclassifications and OODs by 5.8% ∼ 16.1%, respec-
tively. All the results demonstrate that our method, which
involves joint optimization of EDL posterior and prior,
improves both classification performance and the quality
of uncertainty for heart failure prediction simultaneously.

E. Implications of the estimated uncertainty
To gain a deeper understanding, we visualize the un-

certainty distribution estimated using our method for
the training, validation, and testing sets of Task 3 in
Fig. 5(a). It is evident that the near and far out-of-
distribution (OOD) sets exhibit larger uncertainty mea-
surements compared to the validation and in-distribution
(ID) testing sets, with the far OOD set displaying even
greater uncertainty. This observation implies that an
uncertainty threshold can be identified from the validation
set and utilized to reject certain automatic diagnoses
made by the system (as shown in Fig. 1). This approach
effectively reduces the risk of misdiagnosis caused by shifts
in the data distribution.

Within the ID testing set, we further divide the pre-
dictions into correct and incorrect prediction groups,
and their corresponding uncertainties are displayed in
Fig. 5(b). It is evident that correct predictions tend to
have lower uncertainty compared to incorrect predictions.
This indicates that we can effectively use uncertainty
measurements to identify cases where the model cannot
make automatic diagnostics and promptly refer them
to clinicians for further evaluation and correction. This
human-in-the-loop diagnostic pipeline can significantly
enhance the overall performance of disease diagnostics
while reducing the workload for clinicians compared to
traditional diagnostic systems [47].
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TABLE III
PERFORMANCE COMPARISON FOR THE BINARY CLASSIFICATION (A SUB-TASK OF TASK 3) UNDER DIFFERENT CLASS DISTRIBUTION.

Normal : Abnormal Method Rec↑ Brier↓ ECE↓ AUCm↑ AUCn
o ↑ AUCf

o↑

58.4% : 35.3% Vanilla EDL 0.784 0.231 0.100 0.878 0.802 0.935
Ours 0.803 0.219 0.009 0.891 0.844 0.937

58.4% : 17.7% Vanilla EDL 0.617 0.346 0.178 0.679 0.712 0.835
Ours 0.724 0.291 0.135 0.756 0.797 0.883

58.4% : 8.8% Vanilla EDL 0.556 0.398 0.205 0.587 0.650 0.728
Ours 0.681 0.313 0.157 0.690 0.781 0.805

F. Robustness to Different Class Imbalance Levels
To directly demonstrate the potential of our proposed

method in enhancing classification and uncertainty quan-
tification across various degrees of class imbalance, we
conduct a detailed comparison using Task 3. As illustrated
in Table I, the two major classes account for 58.4%
(normal class) and 35.3% (R-on-T abnormal class) of
the dataset. We applied random downsampling to the
abnormal class and exclusively utilized data from these
two classes for model training and evaluation. Table III
provides a comprehensive summary of the results for the
binary classification task.

The results clearly indicate a substantial degradation in
performance across all metrics due to the reduced avail-
ability of the abnormal class, as the severe class imbalance
significantly heightened the task’s complexity. However,
when compared to vanilla EDL, our method, trained using
the pooling loss and the adaptive prior, exhibits greater
stability in the presence of class imbalance. The relative
performance gain, particularly in scenarios with more
skewed class distributions, is even more remarkable. For
instance, the improvement in Recall increases from 2.4% to
22.5% when the proportion of the abnormal class decreases
from 35.3% to 8.8%. All of these observations collectively
suggest that our method demonstrates robustness across
various class imbalance levels.

G. Ablation Study
Our method consists of three key components: the novel

class pooling loss calculation module L′ (Eq. 4), the
novel adaptive prior parameterized by β (Eq. 5), and the
previously proposed sample-wise KL-divergence based loss
function L(i) (Eq. 2). In this section, we selectively degrade
each key component to its vanilla version to understand
the role of each component. Specifically, we report the
performance for Ours-Dir(1), wherein our method uses the
uniform prior instead of the trainable prior, Ours-Dir(η),
wherein our method using the reverse class proportion as
the prior instead of the trainable prior, and Ours-average,
wherein our method using the average loss over a batch
instead of the class pooling loss. Furthermore, we also
compare our method to I-EDL [48], a recently proposed
EDL method which introduces Fisher Information Matrix
to measure the informativeness of evidence carried by each
sample i, according to which we can dynamically reweight
the loss term L(i) to make the model more focus on the
representation learning of uncertain data. Although I-
EDL considers data uncertainty which mainly arises from

TABLE IV
PERFORMANCE FOR ABLATION STUDY.

Rec↑ Brier↓ ECE↓ AUCm↑ AUCn
o ↑ AUCf

o↑

Ours 0.778 0.319 0.062 0.911 0.917 0.973
Ours-Dir(η) 0.755 0.340 0.070 0.881 0.894 0.950
Ours-Dir(1) 0.694 0.401 0.079 0.876 0.878 0.927
Ours-Average 0.417 0.585 0.120 0.863 0.824 0.905
Vanilla EDL 0.388 0.685 0.175 0.843 0.786 0.887
I-EDL 0.458 0.500 0.092 0.902 0.897 0.942
Ours+I 0.785 0.309 0.058 0.923 0.930 0.983

the data noise and label ambiguity, it may be less effective
for class imbalance, which causes model uncertainty due to
data sparsity. Therefore, for the imbalanced medical data,
we also implement our class pooling loss and adaptive
prior mechanisms into the I-EDL method, which we term
as Ours+I for a comparison. The results of the above
methods for Task 3 are summarized in Table IV.

From the results, it is evident that our complete method
outperforms all the degraded versions, suggesting that
each design in our method makes an independent contri-
bution to the final results. Among the degraded versions,
the Ours-average approach presents the most significant
performance decline. This demonstrates the superiority
of our proposed class pooling loss derivation in addressing
the class imbalance challenge. Then, looking at the results
for I-EDL, it enhances the vanilla EDL with a notable
performance improvement; however, it is outperformed by
our method. This reinforces our assumption that I-EDL
can enhance learning for uncertain data but is still in-
sufficient for the underrepresented class. When combining
I-EDL with our method, we observe a performance boost
of 0.9 ∼ 6.5%. This suggests our method can be adapted to
other variants to leverage the strengths of each approach.

In summary, our method proves to be highly effective
for diagnosis and uncertainty quantification in a variety of
imbalanced data scenarios. It not only brings significant
improvements over vanilla EDL but also outperforms
many baseline methods, particularly in cases of extreme
data imbalance. These results pave the way for reliable
deep learning-driven health diagnosis applications in real-
world settings.

VI. RELATED WORKS

A. Uncertainty Quantification
As previously discussed, Softmax-based deep classifiers

are widely adopted; however, they can only quantify
uncertainty from data. To enable more reliable uncer-
tainty estimates for misclassification identification and



10 IEEE JOURNAL OF BIOMEDICAL AND HEALTH
INFORMATICS

OOD detection, researchers have explored more advanced
uncertainty-aware deep learning techniques.

Bayesian neural networks quantify the overall uncer-
tainty by learning a distribution over the model param-
eters [49]. However, deriving the posterior of the model
becomes intractable due to the large number of parameters
in modern deep neural networks. To address this challenge,
approximations such as variational inference [50], and
Monte Carlo Dropout [22] have been proposed to facilitate
computation. Despite the simplicity of Dropout approx-
imation, it may not adequately capture the epistemic
uncertainty arising from the model, especially when the
dropout rate is low.

Deep ensembles, known as a frequentist method for un-
certainty estimation, train multiple models using different
subsets of the data or model initializations (Ganaie et
al., 2021). While ensembles have demonstrated effective-
ness, they come with increased computation and memory
costs [44]. As a result, ensembles have limited applicability
in real-time applications that have strict memory, time,
and safety requirements [20].

In light of this, Evidential Deep Learning (EDL) has
emerged as a cost-effective approach. EDL also follows
the Bayesian rule, but it quantifies uncertainty by con-
sidering the distribution over predictions rather than
model parameters [14]–[16], [26]. Through our experiments
in Sec. V, we have also empirically demonstrated its
outstanding performance in probability calibration and
misclassification as well as OOD detection, in comparison
with the various baselines discussed above.

B. Uncertainty for Health Applications
Due to the safety-critical nature of health applications,

there has been a growing interest in incorporating uncer-
tainty quantification for ensuring trustworthiness in the
literature [2], [9], [10]. For instance, Lei et al. utilized
uncertainty estimation in diagnosing diabetic retinopathy
from fundus images of the eye [5], [6]. The quantified
uncertainty was used for selective prediction: retaining
low-uncertain outputs while referring high-uncertain pre-
dictions to doctors, involving clinicians in the loop and
enhancing the system’s robustness. This approach indi-
cates that uncertainty estimates enable a human-in-the-
loop medical diagnosis, helping to mitigate misdiagnosis
from the model. Similarly, uncertainty-aware emotion
recognition from video [51], lung disease prediction from
X-rays [7], and OOD detection for skin lesion diagnostic
systems [8], [9] have also been investigated. Thanks
to uncertainty measurements, these models have shown
superior performance and improved robustness in realis-
tic deployment settings. Moving beyond image models,
Xia et al. [10], [45], [52] have benchmarked uncertainty
estimation methods on various data modalities, i.e., respi-
ratory sounds, heart activity, brain waves, etc. Although
uncertainty-aware modeling has been explored in various
applications, the existing focus has mainly been on simple
Softmax-based approaches that can be overly confident,
or MCDP and Ensembles that require substantial com-

putational power and are challenging to deploy in real-
world scenarios. In comparison to all existing studies, we
are the first to explore the state-of-the-art uncertainty
quantification method EDL in health diagnostics, and our
experiments have demonstrated its strong performance on
there different health data modalities and applications.
C. Class Imbalance

Class imbalance is a prevalent issue in health [53] and
the broader machine learning applications. A pleura of
techniques have been proposed to address this problem, in-
cluding three categories: information augmentation, class
re-balancing, and module improvement [54]. The simplest
information augmentation methods are random under-
sampling (RUS) and random over-sampling (ROS) [55].
Those methods are frequently used for health data to
handle the imbalance [56]–[58]. Yet, they become infea-
sible when the data imbalance is extreme [59]. Synthetic
generation [60] or interpolation [56], [61] to increase the
minority samples are also explored. However, they are
sensitive to imperfections in the generated data and
hard to generalize. Class re-balancing methods modify
the training procedure by introducing cost-sensitive losses
or scaling the classification thresholds [62]. Well-known
implementations include class-balanced loss [63], focal
loss [64], and recently developed contrastive loss [65]
and de-biased cross-entropy loss [66]. Despite their effec-
tiveness, those methods usually involve hyperparameters
that need to be carefully tuned during training, making
them difficult to generalize. Moreover, those methods are
based on Softmax and thus cannot be directly adapted
into the EDL framework for uncertainty quantification.
Module improvement often evolves novel model designs
to alleviate the bias caused by class imbalance. Ozturk et
al. proposed to decouple the learning of features and the
classifier: this method uses the deep clustering method to
obtain features with maximum class separation and then
learns the classifier by keeping the class marginal [42].
Similarly, Li et al. proposed cross-staged distilling method
to prevent the classifier from being biased based on the
learned features [67]. The attention mechanism was also
leveraged to exploit class-agnostic global attention feature
maps for the imbalanced medical data [68]. Although those
methods present strong performance, they usually require
more data and yield additional computational costs.

In this paper, we integrate class re-balancing method
into EDL framework. Existing loss-based or threshold-
based solutions are designed for the Softmax-based clas-
sifiers, which does not apply to Dirichlet-based methods
like EDL. To this end, we proposed novel and easy-to-
implement mechanisms that can be inherently integrated
with EDL for EDL to tackle the class imbalance challenge.
Extensive comparison in Sec. V-D also demonstrates the
superiority of our method.

VII. CONCLUSION

This paper presented a systematic uncertainty quan-
tification study to address the challenges posed by im-
balanced medical data. By devising novel mechanisms for
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EDL, we significantly improved its effectiveness in both
classification performance and uncertainty estimation in
the presence of class imbalance when applied to health
diagnostics. Through extensive experiments across various
data modalities and imbalance levels, the superiority
of our class-balanced EDL method was demonstrated.
Our study has important implications for the practical
and reliable deployment of uncertainty-aware intelligent
health diagnosis systems in real-world settings. Our study
highlights the significance of considering class imbalance
in uncertainty quantification for health diagnosis and
holds crucial implications for the practical and reliable
deployment of uncertainty-aware intelligent health diag-
nosis systems in real-world settings, providing valuable
support for decision-making processes. For future work,
we plan to explore the deployment of EDL for regression-
based health problems with skewed training data. It is also
promising to further enhance uncertainty quantification
by differentiating between model uncertainty and data
uncertainty under data imbalance, leading to more reliable
interpretations of the outcomes.
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