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Abstract—An electrocardiogram (ECG) records the electrical
signals from the heart to assess various cardiovascular conditions.
Deep learning methods have been proposed to model ECGs, but
the insufficient availability of ECG data and annotations often
hinders their performance. To address this challenge, this paper
explores the latest data synthesis technique, i.e., diffusion proba-
bilistic models (DPMs), to enable the generation of an unlimited
number of ECGs representing various cardiovascular conditions.
In contrast to previous approaches that treat ECGs as time series
data or convert them into power spectrograms, we introduce a
novel multi-channel spectrogram-based diffusion framework. In
our method, the diffusion model enhances generation diversity,
while the multi-channel spectrogram preserves both magnitude
and phase information, ensuring high fidelity in the reconstructed
ECGs. Extensive experiments conducted on real-world ECG data
demonstrate the superiority of our approach. Notably, our ECG-
DPM outperforms the best baseline by a margin ranging from
12.5% to 62.5% when generating ECGs for 30 seconds.

Index Terms—Electrocardiogram, Data Generation, Mel Spec-
trogram, Diffusion Model

I. INTRODUCTION

Cardiovascular diseases (CVDs) are among the leading
causes of death globally [1], [2]. To prevent severe CVDs
from developing, clinicians usually measure electrocardio-
grams (ECGs) to diagnose conditions and deliver timely inter-
ventions. Machine learning models, particularly deep learning
models, are now being widely studied to automatically classify
ECGs and improve clinical efficiency [3]–[6]. Unfortunately,
the performance of these methods highly depends on the
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quality and quantity of annotated ECG data available for model
training. Yet, it is usually difficult to gather sufficient data
for diagnostic model developing, due to health data privacy
constraints and the high cost of annotation by cardiologists [7].
To this end, generating realistic ECGs becomes a crucial task.

Recognising the significance of ECG generation, exten-
sive studies have been conducted, facilitated by remarkable
advancements in deep generative models. Among those, the
applications of Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs) have emerged as outstanding
examples [8]–[10]. Despite their impressive performance in
generating ECGs, these methods require large data to fit the
additional model parameters and often result in unstable gen-
erations when compared to traditional statistical models [11].

Built on deep generative models, existing works generate
ECGs in two ways: i) by directly generating ECG signals,
treating ECG as one-dimensional time series data [8], [10],
and ii) by generating power spectrograms through Short-
Time Fourier Transform [12] applied to the signals, followed
by the subsequent recovery of ECG signals from the spec-
trograms [9], [13]. However, the former approach tends to
introduce the issue of ECG amplitude baseline drift, whereas
in the latter approach, information is lost during the signal
recovery process from the magnitude of the spectrograms [12],
[14].

To address the aforementioned limitations in existing ECG
generation methods, this paper introduces a novel spectrogram
generation framework called ECG-DPM. This framework is
inspired by the recently emerged approach in generative
modelling literature known as diffusion probabilistic models
(DPMs) [15], [16]. Its core idea for data generation involves
initially learning the underlying data distribution by iteratively
adding noise to an initial sample and subsequently generating
samples by removing noise from any given noisy sample.
Compared to GANs and VAEs, DPMs have demonstrated



Fig. 1. ECG-DPM framework overview. The three-channel spectrograms are fed into a DPM underpinned by a UNet architecture. New spectrograms can be
generated from the model and thus, ECGs signals can be reconstructed from the spectrograms.

superior efficiency and robustness in various applications [17].
Building upon DPMs, for the complete recovery of the ECG
signals from spectrograms, we utilise the real part, the imag-
inary part, and the magnitude of the spectrogram as a three-
channel input to fit the model parameters.

The proposed ECG-DPM was trained on a publicly avail-
able single-lead ECG database [18], enabling us to generate an
unlimited number of ECGs. Visualisation demonstrates that the
generated ECG signals, representing both normal and abnor-
mal classes, exhibit high quality and diversity. Additionally, we
conducted a quantitative comparison of the fidelity of our gen-
erated ECGs with two state-of-the-art (SOTA) baselines. Our
extensive results reveal that our generated ECG signals can be
accurately classified by previously developed CVD diagnostic
models (outperforming the SOTA by 12.5 ∼ 19.7%), exhibit
a strong similarity to the original ECGs (outperforming SOTA
by 37.4%), and maintain stability for long signal duration
(outperforming the SOTA by 62.5%).

II. METHODS

This section introduces our proposed ECG-DPM frame-
work. As illustrated in Fig. 1, ECG-DPM consists of there
primary modules, which are elaborated on in the following.

A. Spectrogram preparation

As a variation of the Fourier Transform, STFT provides a
time-dependent representation of the frequency components of
a signal. Given an ECG signal x(t), STFT is defined by the
energy coefficient at any time t and frequency f . To easy the
computing, it is common to use the discrete STFT [19]: x(t)
obtained by sampling frequency fs will be segmented into
overlapped short windows (i.e., each segment has a duration
T containing N data points with N = T ·fs). The frequencies
are considered by frequency bins, which are evenly spaced
between 0Hz and the Nyquist frequency (i.e., half of fs) [20].
Mathematically, the discrete STFT can be expressed as,

X[n, k] =
N−1∑
m=0

x[n+m] · w[m] · e−j2πkm/N , (1)

where w[m] is the value of the window function at segment
m, and e−j2πkm/N represents the complex sinusoidal basis
function at frequency bin k for segment m.

Under certain constrains (e.g., constant overlap-add com-
pliant) [12], the signal can be reconstructed from the discrete
STFT by1,

x(t) =
∑
n

∑
k

X[n, k] · w[t− nT ] · ej2πkt/T . (2)

For spectrogram based deep learning models, the power
spectrogram (i.e., the magnitude of the complex STFT co-
efficient) is widely used [21], [22], as it provides information
about the distribution of power (or energy) across different
frequency components and time intervals in a signal. However,
for signal generation purpose, it should be noted that the
signal x(t) cannot be recovered from merely the magnitude
of X[n, k]. This suggests that even if a generative approach
can generate perfect power spectrograms, we can hardly
reconstruct the signals from the spectrograms. To this end, we
propose to use the three-channel spectrogram S[n, k] which
preserves all the information that is needed for signal recon-
struction. Specifically, S[n, k] consists of the real channel,
imaginary channel, and magnitude channel, as below,

SR[n, k] =

N−1∑
m=0

x[n+m] · w[m] · cos(−2πkm/N),

SI[n, k] =

N−1∑
m=0

x[n+m] · w[m] · sin(−2πkm/N),

SM[n, k] =

N−1∑
m=0

x[n+m] · w[m].

(3)

Like the RGB channels of an image, those three channels
for a spectrogram are correlated with each other, as they are
bounded by the phase ϕ = −2πkm/N and the magnitudes.
Now, S tends out as a real-valued spectrogram, which can
be fit into deep learning models. S ∈ R3×L×K , where L is
the total number of temporal segments, and K is the total
number of frequency bins. Fig. 2 displays an example of a
three channel spectrogram.

B. Diffusion probabilistic model training

Diffusion probabilistic models (DPMs) [15], [17] generate
samples by learning the target data’s underlining distribution.

1ej2πkt/T a complex-valued exponential term, but when we sum up all
the contributions over k for each time n, the result is a real-valued x(t).



Fig. 2. Example of a three-channel spectrogram. For visualisation purpose,
we display the logarithm of the absolute value of the coefficient, but we fit
the original coefficient into the model. These three channels are highly related
but contain different information.

This is learnt by a gradual reverse process of adding noise,
which recovers the less noisy value in each step.

In the forward process of DPMs, Gaussian noise is gradually
added to the initial clean observation s0 ∈ R3×L×K , until
sΓ ∈ R3×L×K becomes a random noise after Γ steps. The
process can be formulated by a Markov chain,

q(s1:Γ|s0) =
Γ∏

τ=1

q(sτ |sτ−1), (4)

where q(sτ |sτ−1) is a known Gaussian distribution parame-
terised by βτ . On the contrary, the reverse denoising process
is unknown, and DPMs aim to learn a deep learning model
θ to approximate the reverse distribution pθ(sτ−1|sτ ) for any
time step τ . The parameter θ can be optimised by minimising
the negative log-likelihood via a variational bound,

min
lim θ

Eq ≤ min
lim θ

Eq[− log p(sΓ)−
Γ∑

τ=1

pθ(sτ−1|sτ )
q(sτ |sτ−1)

]. (5)

For implementation, we choose the UNet architecture [23],
which comprises an encoder and a decoder as the model θ
to reduce the noise for a given diffusion step. The encoder
progressively reduces the resolution of map features, while
the decoder employs up-sampling gradually to restore feature
maps to the original shape. The class label c for the ECG
sample and the diffusion step τ are also concatenated with the
feature maps; hereby, the output of the model is denoted by
ϵθ(sτ , c, τ). By applying a re-parameterisation trick [24] for
Equ. (5), the optimisation for θ can be efficiently achieved by
Algorithm 1 (line 1-6).

C. Spectrogram and signal generation

Once the model θ is trained, we can generate ECGs from
a noisy spectrogram s′Λ. s′Λ is obtained by adding Λ steps
of noise into a randomly picked clear spectrogram s0. Then,
we employ the trained UNet to gradually remove the noise
from sΛ, ending up with a clear and new ECG spectrogram

Algorithm 1: Training and Sampling
Input: Noise level βτ , so ατ = 1− βτ and

ᾱτ = 1−
∏Γ

τ=1 βτ .
1 Training (repeat until converged):
2 Sample s0 from the dataset
3 τ ∼ Uniform({1, 2, ..,Γ})
4 ϵ ∼ N (0, I), I ∈ R3×L×K

5 Take gradient descent step on:
6 ∇θLMSE(ϵ, ϵθ(

√
ᾱτs0 +

√
1− ᾱτ ϵ, c, τ))

7

Sampling:
8 s′Λ ← q(s1:Λ|s0)
9 z ∼ N (0, I), I ∈ R3×L×K

10 for τ = Λ, .., 1 do
11 s′τ−1 = 1√

ατ
(s′τ − 1−ατ√

1−ᾱτ
)ϵθ(s

′
τ , c, τ) +

√
βτz

12 end
13 Return S ← s′0

s′0. The detailed implementation is illustrated in Algorithm 1
(line 8-13).

The generated instance S is a three-channel spectrogram
as defined by Equ. (3). We recover the ECG signal from the
real and imaginary channels by inverse the STFT according
to Equ. (2). Formally, the reconstruction is formulated by,

x(t) =

L∑
n=1

K∑
k=1

(SR[n, k] + jSI[n, k]) · w[t− nT ]. (6)

III. EXPERIMENTS

A. Experimental set-up

Dataset. We trained the model using the dataset from the
PhysioNet/CinC Challenge 2017 [18]. The dataset consists of
single-lead ECG recordings collected via clinical devices. The
training set comprises 8 528 recordings, with duration ranging
from 9 to slightly over 60 seconds. All records were sampled
at a rate of 300 Hz and were annotated into normal, Atrial
Fibrillation (AF), and other categories. For our training, we
used data from both normal and AF categories.

Since the original signals vary in length, we uniformly
trimmed them to the first 5 seconds and the first 30 seconds
(signals shorter than 30 seconds were extended by repetitive
padding). We then converted the signals into spectrograms
using STFT with a Hanning window function (w), a seg-
mentation length of N = 50, an overlapping length of 25,
and FFT points set to K = 512 [25]. Observing that the
energy is mainly distributed in the low-frequency band of
the spectrograms, to expedite model training, we retained
only the first 64 frequency bins of the spectrograms. This is
equivalent to applying a low-pass filtering technique to the
original signals with cutoff frequencies set at 37.4 Hz [26].
Consequently, the resulting spectrogram has dimensions of
R3×61×64.
Training parameters. The UNet consists of four down-
sampling layers, a middle layer, and four up-sampling layers.



Three ResNet blocks are introduced before each sampling
layer. Attention blocks are added at the last down-sampling
layer and the first up-sampling layer. The middle layer consists
of two ResNet blocks and an attention block. Channel multipli-
cations are set to {1, 2, 4, 8}, respectively, and sampling layers
are implemented with convolution blocks. We implemented
our UNet with reference to [15], [16], [27]. For the diffusion
process, we used Γ = 1000 and βτ uniformly distributed in
[0.0001, 0.2] to convert the spectrogram into a random noise2.
To optimise the parameters, the AdamW optimiser with a
weight decay of 1e− 6 and a starting learning rate of 5e− 5
was utilised. The batch size was set to 64. All experiments
were conducted by Python on three RTX 4090 GPUs.
Baselines. We compared our model with the diffusion model
that takes the time series data directly as input, which is
called 1D-Diffusion method. The structure of the UNet for
this baseline is similar to that of ECG-DPM, with the same
channel multiplication of {1, 2, 4, 8}. This baseline utilises
one-dimensional (1D) conventional layers, specifically four
1D-ResNet blocks in each layer to model time series. We
also employed another ECG generation baseline based on
GAN, namely ECG-GAN [28]. This method consists of a
generator which converts given random noise into ECG signals
via a Long Short-Term Memory (LSTM) [29] network and
a discriminator which employs a similar LSTM to predict
whether the input is an ECG or noise. We used the official
implementation from [28]. In this model, we trained two
models for the normal and AF class, separately, since the
LSTM layer cannot explicitly decode the class label.

B. Experimental results

Visualisation of the synthetic ECGs. We first demonstrate
that ECG signals can be recovered from our defined and
preprocessed spectrograms. Fig. 2 illustrates the spectrogram
of the provided signal. It can be observed that by retaining
only the low-frequency band up to 37.4Hz, the signal can be
successfully reconstructed from the real and imaginary parts
of the spectrogram (as described in Equ. (6)). Given that the
typical heart rate falls within the range of 60 to 100 beats per
minute, a cutoff frequency of 37.4 Hz strikes a good balance
between learning complexity and effectiveness.

After confirming the suitability of the spectrograms for
ECG signals, we proceeded to train our ECG-DPM model and
generate spectrograms using Algorithm 1. In Fig. 3, we present
examples of both original and generated ECG signals. It is
evident that our ECG-DPM generates ECGs that differ from
the original signals. The generated normal ECGs exhibit reg-
ular heartbeats but show various artifacts, while the generated
AF ECGs tend to display irregular rhythms. This observation
also underscores the capability of ECG-DPM to capture the
class-conditional data distribution, enabling the generation of
an unlimited number of new samples.
Quantitative comparison. In addition to visualisation, we
also conducted experiments to quantitatively demonstrate the

2We adapted the implementation from https://github.com/openai/improved-
diffusion

TABLE I
QUANTITATIVE PERFORMANCE COMPARISON WITH BASELINES (WITH
ECG DURATION FIXED AT 5 SECONDS). THE ARROW INDICATES THE

OPTIMAL DIRECTION OF THE METRICS.

Precision↑ Recall↑ FID↓ Slope↓

Raw validation set 0.768 0.884 0.000 9.86e-4

ECG-GAN 0.461 0.786 34.328 1.54e-2
1D-Diffusion (Λ = 200) 0.585 0.640 36.211 1.69e-3
1D-Diffusion (Λ = 100) 0.621 0.857 21.305 1.77e-3

ECG-DPM (Λ = 200) 0.563 0.692 28.203 2.79e-4
ECG-DPM (Λ = 100) 0.712 0.840 11.135 9.54e-4

TABLE II
QUANTITATIVE PERFORMANCE COMPARISON WITH BASELINES (WITH
ECG DURATION SET TO 30 SECONDS). ∆ REPRESENTS THE RELATIVE

IMPROVEMENT OF OUR ECG-DPM OVER 1D-Diffusion.

Precision↑ Recall↑ FID↓ Slope↓

Raw validation set 0.852 0.910 0.000 9.86e-4

ECG-GAN 0.501 0.415 45.623 1.01e-3
1D-Diffusion (Λ = 100) 0.527 0.583 38.844 2.35e-3

ECG-DPM (Λ = 100) 0.593 0.698 24.312 8.82e-4
∆ 12.5% 19.7% 37.4% 62.5%

superiority of our model compared to baselines. The following
measurements are reported to showcase the fidelity of the
generated ECGs. For all generative methods, we generated 150
normal samples and 150 AF samples to derive metrics. As a
reference, we also report the metrics on the original validation
set containing 150 normal and 50 AF samples.

topsep=1pt, itemsep=0pt, leftmargin=10pt

• Being correctly classified. We employed an ECG classi-
fier trained by the same databases to classify the synthetic
ECGs [30]. The performance is quantified by Precision
and Recall by treating normal as class 0 and AF as class
1.

• Be similarly distributed with the training ECGs. To
quantify the distance of the distribution between the orig-
inal ECG set and the generated set ECG, we employed
Fréchet Inception Distance (FID) [31]. To obtain FID,
we derived embeddings for the power spectrogram of
ECGs via a pre-trained InceptionV3 [32], [33], and then
calculate FID as FID = ||µg − µo||2 + Tr(Σg + Σo −
2
√

ΣgΣo), where µ ∈ R2048 and Σ ∈ R2048×2048

denote the mean and covariance for embeddings. The
subscript g and o denote the generated set and original
set, respectively.

• Being stable. We notice that the baselines that generated
ECGs as time series face the problem of ECG amplitude
drift, while our spectrogram-based method does not have
this issue. To verify this, we fit the baseline amplitude of
the ECGs using the least squares, and report the averaged
slope.

The results are summarised in TABLEs I and II. It is evident
that regardless of generating ECGs at different lengths (either



Fig. 3. Examples of the raw and generated ECGs for normal and AF classes, where we set Λ = 100. The generated samples are visibly different from the
original signals that are used for model training.

5 seconds or 30 seconds) and under varying noise levels (Λ =
100 or 200), our ECG-DPM consistently outperforms both 1D-
Diffusion and ECG-GAN across all metrics. Notably, when
generating longer ECGs, i.e., 30 seconds, with a noise level of
Λ = 100, our ECG-DPM surpasses 1D-Diffusion by a margin
ranging from 12.5% to 62.5%, as detailed in TABLE II. This
highlights the high fidelity and stability of the ECGs generated
by our model.

While there is a noticeable performance gap between the
generated ECGs and the original validation set, our model
excels in generating an unlimited number of ECGs as data
augmentations while maintaining acceptable data quality. By
comparing TABLE I and TABLE II, we also observe that
generating longer ECGs (e.g., 30 seconds) presents a greater
challenge compared to shorter ones (e.g., 5 seconds). This
underscores the need for more extensive training data to
enhance the performance of generative models.

IV. CONCLUSIONS

In this paper, we explored a spectrogram-based diffu-
sion probabilistic model for generating ECGs. Our proposed
method, ECG-DPM, has demonstrated superior performance
compared to other state-of-the-art baselines. By utilizing a
novel multi-channel spectrogram-based approach, our model
ensures high fidelity in the generated ECGs and effectively
captures both magnitude and phase information. Extensive ex-
periments show that ECG-DPM outperforms existing methods
by a significant margin, achieving improvements ranging from
12.5% to 62.5% in various metrics. These findings highlight
the potential of ECG-DPM in generating high-quality, diverse
ECG signals that can be used for augmenting training datasets
and improving machine learning models for cardiovascular
diagnosis.

In the future, we aim to extend our work to generate
multi-lead ECGs, which would provide a more comprehensive
representation of the heart’s electrical activity. Additionally,
we plan to explore the generation of other types of bio-signals,

such as electroencephalograms (EEGs) and electromyograms
(EMGs), leveraging the flexibility of our diffusion probabilistic
model framework. These extensions will further validate the
robustness and applicability of our approach across different
types of sensory data.

The ability to generate realistic bio-signals has several im-
portant applications. Firstly, it can significantly enhance data
privacy during data sharing by generating synthetic datasets
that can be used for research and development without com-
promising patient confidentiality, thereby preventing attacks
from individual identification methods [34], [35]. Secondly,
the generated data can contribute to the training of large-scale
models, providing abundant and diverse training examples
that improve model generalization and performance [36]–
[38]. Additionally, given the popularity and power of multi-
modal large language models (MM-LLMs) [39], integrating
our generative model into these frameworks as a decoder will
enable more applications, such as combining textual clinical
notes for bio-signal generation [40], [41].
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