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Abstract—Electrocardiogram (ECG) recording systems are in-
creasingly being integrated into consumer wearable systems such
as smartwatches, providing users with access to clinically-relevant
information about their heart activity anytime, anywhere. The
increasing adoption of in-ear wearables, known as earables,
as well as their stable position on the body, makes them an
attractive prospect for ECG integration. However, this comes
with several challenges. Other biosignals, including those from
the brain and surrounding muscles, are detectable at the ear
in the same frequency bands with much higher amplitudes. This
means that the ECG signal-to-noise ratio (SNR) can be extremely
low at this location. The few existing denoising approaches mostly
rely on autoencoders. In some cases they fail to recover the
ECG morphology, and their black-box nature does not allow
for explainability or understanding of limitations.

To address these issues, we introduce a novel system to record
and denoise ear-ECG signals, leveraging open-source hardware
and the Extended Kalman Filter. In-ear audio recording of heart
sounds is used to accurately determine timings of cardiac cycles.
From these timings, a short-term ensemble average ECG signal
is calculated, which is used to fit the parameters of a dynamical
ECG model to an individual user. The Kalman filter is then
applied to the full time series ECG for denoising, using the
dynamical model for its state prediction steps, and heart sounds
as phase measurements. We have evaluated the system with data
collected from 18 participants. The results report a mean SNR
of 6.4 dB, mean absolute QT interval error of 54 ms, and heart
rate error of 3 BPM, demonstrating the system’s potential for
continuous, non-invasive, user-friendly ECG monitoring.

Index Terms—Earable, Electrocardiogram (ECG), Denoising.

I. INTRODUCTION

The electrocardiogram (ECG) is a recording of the electrical
activity of the heart, and is widely used for monitoring or diag-
nostic purposes. Cardiac potentials propagate from the heart in
all directions, so ECGs can be recorded by measuring voltages
between electrodes placed on the skin [1]. To record high
quality data, some distance between the electrodes is required
since differential signals are recorded. Electrode placements
for clinical practice have been standardised to produce leads,
each of which captures heart activity in a known direction
[2]. Lead I, for example, measures the horizontal cross-body
cardiac vector, normally between electrodes on the left and
right arms. Normal, healthy ECGs are cyclical in nature, with
five major peaks and troughs labelled as P, Q, R, S and T
waves, as shown in Fig. 1.
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Fig. 1. Healthy single ECG cycle with labelled P, Q, R, S and T waves

In recent years ECG recording technology has started to
be incorporated into wearable devices, allowing the scaling of
cardiac health observation out of clinical settings. The most
common of these are heart monitor chest straps such as the
Polar H10, specifically designed for this single purpose, and
smartwatches such as the Apple Watch. Both, however, have
their drawbacks. Chest straps are uncomfortable, and since
their only usage is measurement of cardiac activity they can
be inconvenient, requiring users to alter their behaviour to wear
additional devices. While smartwatches are more agreeable for
day-to-day wearing, their method of recording ECGs requires
users to touch the watch with the opposite hand. This blocks
the use of both hands and vastly limits the scenarios in which
data can be recorded, making passive monitoring impossible.
Ear-ECG systems have the potential to solve these problems:
earphones exist in comfortable form factors which users are
used to wearing daily, and their symmetrical placement across
the head provides the necessary inter-electrode distance in an
orientation suitable for Lead I ECG measurement.

Implementation of ear-ECG systems is not without chal-
lenges. Although cardiac potentials propagate throughout the
entire body, the relative narrowness of the neck means that
by the time they reach the ears, ECG signals have been
greatly attenuated [3]. Other potentials also exist in the body,
including those originating from the brain (EEG signals) [4],
eyes (EOG signals) [5] and muscles (EMG signals) [6]. The
frequency spectra of these overlaps with that of the ECG,
but since they originate much closer to the ear they have
significantly higher amplitudes at this location. This means
that the base signal-to-noise ratio of ear-ECG recordings is
very low, and cannot be easily improved with basic frequency
cutoff filtering.

A small number of works have been published in the area.
One work did not attempt to extract full time series ECG
data from electrode recordings around the ears. Instead, they
produced ensemble average single cardiac cycles, averaged



using timestamps from separate sensors [3]. Similarly, [7]
averaged using ground truth ECG data, and had cross-head
ECG signals with very low correlation to their ground truth
(mean spectral coherence <0.2). Although an average cycle
does contain rich information about the user’s cardiac activity,
a lot is also lost, including heart rate variability (HRV) data and
potential inter-cycle variations in morphology. A recent work
took an energy domain approach, based on adaptive Fourier
decomposition, which gave good results for R-peak timings
but otherwise produced very distorted morphologies [6]. The
most successful denoising works in the field so far have
used autoencoders trained with noisy ear-ECG as input and
simultaneously recorded clean Lead I ECG as output. The first
system taking this approach yielded acceptable performance,
with large SNR improvements (median 5.9 dB) over the base
recording, but was shown in a scatter plot to output signals
with very large variations in heart rate from the ground truth,
and in some cases failed to recover morphologies [8]. A more
recent work refined this method with further processing steps,
but at its base still relied on non-explainable signal generation
from a black box autoencoder, and focused only on R-peak
quality metrics rather than the full ECG morphology [9].

To improve on these results, we propose a multi-modal
denoising approach. Heart sounds from inside the ear canal
give high-accuracy information about the phase of the ECG
signal, and can be recorded using in-ear microphones that
already exist in many consumer headphones. We feed these
heart sounds into an Extended Kalman Filter (EKF) with a
fitted ECG dynamical model for ear-ECG denoising.

II. BACKGROUND
A. Extended Kalman Filter

The standard Kalman filter is an algorithm which uses noisy
measurements to estimate the true state of a dynamic system
[10]. A linear system is modelled with state vector x, state
transition matrix A and process noise w as:

L1 = Aﬁk + wy, (1)

with observations of y; and measurement noise v;. Both
the process and measurement noise vectors are assumed to be
zero-mean Gaussian vectors with covariance matrices Oy and
Ry respectively.

For every measurement (sample), two steps take place.
Firstly, in the Predict step, the next states of the system are
forecasted using the state transition matrix and process noise
estimate as in (1). The state error covariance matrix Py is also
calculated, as:

Pyji—1 = APy_1jp1 AT + Qu 2)

Secondly, in the Update step, the observed noisy state
values are taken into account. The Kalman Gain is given as:

Py AT
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and is used to adjust the state estimates to take new
measurements into account, giving the final estimate for this
sample as:

Ty = Tppp—1 T Kr(y,, — AZpjp—1) 4)

It can be seen from (3) that the higher the measurement
noise is, the lower the Kalman gain is. This results in the
measurement being given less weight when correcting the state
prediction in (4), and vice versa when the measurement noise
is low. Following this correction, the state error covariance
matrix is recalculated as:

Py = (I — K A) Prjie—1 )]

after which processing begins for the next sample, with
the next states being predicted based on the corrected final
estimates for the current states.

For non-linear systems (such as the ECG model introduced
below), a modified version of the standard Kalman filter is
required: the EKF. In this case the transition matrix doesn’t
exist. Instead, the transition functions are linearised around
the current states at each time step, using a first order Taylor
expansion. The linearised transition functions are then eval-
vated and converted into a matrix in order to calculate the
covariance and gain matrices, from which point the filtering
process continues as above.

B. ECG Dynamical Model

In order to use the EKF, a model of the ECG signal was
required to predict next values based on current states. As
introduced in [11], a standard ECG can be approximated as
a series of deflections away from the baseline representing
the P, Q, R, S and T waves, each of which can be fitted to
a scaled Gaussian. The dynamical model introduced uses a
three-dimensional state equation, with x and y coordinates rep-
resenting two-dimensional periodic circulation around a limit
cycle and the z coordinate representing the ECG amplitude.

This model was modified in [12] by changing the coordinate
system to its polar form, allowing omission of a redundant
state equation and inclusion of the signal’s phase as an explicit
state variable, named 6. This modified version of the model
was chosen for our implementation to allow incorporation of
recorded audio signals as phase measurements, and has the
following discretised form for time step t:

Ok +1] =0k] +w-t
A+ =2k - > tem (6)
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where
AG?
n; = a; - Af; - exp (— 20 > (7

with a;, b;, and 6; representing the Gaussian height, width
and location in the cycle for each deflection respectively, and
Ab; = (0 — 6;)mod(27).



C. Ear Canal Heart Sounds

For segmenting recorded biopotentials into individual car-
diac cycles and to provide phase information about the ECG,
we record heart sounds from inside the ear canal. The audio
signal consists of S1 heart sounds, corresponding to the
QRS complex on the ECG, and S2 sounds, corresponding
to the T wave. The sounds can be recorded leveraging a
phenomenon called bone conduction: sounds inside the body
are conducted through bones, causing the walls of the ear to
vibrate [13]. Further to this, when the ear canal is sealed,
low frequency sounds inside the canal are amplified through
a phenomenon known as the occlusion effect. By occluding
the ear canal (for example with a standard earphone tip) and
placing a microphone inside, these amplified body sounds can
be recorded, including the low frequency heart sounds.

[II. METHODOLOGY

We recorded heart sounds from inside the ear canal which
correspond to the R-peak in the ECG cycle. Initially these heart
sounds were used to give timestamps demarcating individual
cycles. The corresponding ECG cycles were then averaged
together to form a single ensemble average cycle with reduced
noise. This single cycle was used to fit the parameters of an
ECG dynamical model to an individual user, which was then
fed into the state prediction stage of an EKF alongside the
continued noisy ear-ECG signal. The EKF also took heart
sounds as inputs, giving it low-noise periodic measurements
of the ECG phase, to produce a cleaned, accurate time series
ear-ECG signal, from a fully explainable filtering process.

A. Hardware

To record ECG data from locations behind the ear we
used the OpenEarable ExG, an open-source hardware platform
designed to capture a range of biopotential signals from in and
around the ear [14]. Standard Ag/AgCl electrodes were chosen
for their adhesive properties to minimise motion artifacts.
Active electrodes were placed on the mastoid on both sides,
with a passive ground electrode on the back of the neck. The
in-ear microphone of the OpenEarable 1.4 was used to record
heart sounds simultaneously, with these two devices being
connected via an I?C bus to synchronise recordings with an
interrupt [15]. Finally, a MAX30001G evaluation board was
used with Ag/AgCl electrodes to record ground truth Lead I
ECG data, with active electrodes on the left and right wrists
and a ground electrode on the left wrist.

Fig. 2. Experimental Setup: MAX30001G evaluation board recording ground
truth Lead I ECG at the wrists, and OpenEarable-based system recording heart
sounds from the ear canal and ear-ECG signals

B. ECG Model Fitting

From the ensemble average of the initial recorded ECG
signal, the R peak was found first. It was found as the signal
maximum closest to the window boundaries, and hence closest
to the S1 sounds used to compute the average. From here,
the P, Q, S and T peak and trough phases were extracted
by searching for maxima and minima working outwards. The
amplitudes and Gaussian widths at half-height of all five waves
were also extracted, allowing the Gaussians of the dynamical
model to be fully fitted to the recorded ensemble average.

C. Extended Kalman Filter

We used an adapted version of the EKF for ECG introduced
in [12]. In our system, we defined the ECG phase as zero at
the time of an R-peak, which also corresponds to detection of
an S1 heart sound. When one of these sounds was detected,
a phase measurement of zero was input to the EKF with
a low measurement noise setting, giving the EKF periodic
corrections and allowing cardiac cycles to be followed by
the system despite the high measurement noise in the ECG
amplitude state.

D. Data Collection

Eighteen healthy participants (12 males and 6 females, ages
21 to 53) were invited for data collection, which involved
participants sitting stationary for 3 minutes wearing the ear-
ECG system and electrodes on their wrists connected to the
ground truth evaluation board. Care was taken to ensure a good
fit on participants’ ears, since a good seal between the ear tip
and the ear canal was critical for recording good quality heart
sounds. A total of 54 minutes of ear-ECG data was collected.

The ear-ECG data was filtered during recording with a
fourth-order Butterworth bandpass filter, with cutoff frequen-
cies at 0.5 and 50Hz. All data was trimmed to remove
noise from motion at the beginning and end of recordings.
The OpenEarable ExG had some variation in sample rate
across the data collection, so all recordings were resampled
to a consistent 128 Hz, with the audio recordings also being
downsampled from 16kHz to 128 Hz for alignment in the
EKEF. Heart sound timings were extracted from the audio signal
using peak detection in a moving window.

IV. RESULTS

Our results show promising performance. Fig. 3 displays
a sample output of the full system, plotted with the original
noisy signal and the ground truth, and Fig. 4 shows the ensem-
ble average denoised signal and corresponding ground truth for
one participant. It is evident that the system has extracted the
ECG signal and successfully suppressed the noise. To evaluate
the effectiveness of the denoising quantitatively, the signal-to-
noise ratio (SNR) of the recorded and denoised signals from
each participant were calculated using the ”snr” function in
MATLAB. The mean input SNR to the filter from recordings
was -14.9 dB (o = 3.3 dB), and the mean output SNR was
6.4 dB (o = 1.7 dB). This gave a mean improvement of 21.3
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Fig. 3. Example recorded signals for (top to bottom): in-ear heart sound
audio, unprocessed ear-ECG, denoised ear-ECG, ground truth ECG

dB (0 = 2.3 dB), significantly higher than any other ear-ECG
denoising works. These results are shown in Fig. 5.

To ensure that the extracted ECG signal was correct as well
as clean, the heart rate (HR) and QT intervals of the denoised
signals were computed and compared to those of the ground
truth recording. The mean absolute HR error was 3 BPM (o
= 2 BPM), and the mean absolute QT interval error was 54
ms (o = 40 ms). For context, normal resting HRs range from
60-100 BPM, and QT intervals below 440 ms are generally
considered healthy. These results demonstrate that the system
does not simply generate a random clean ECG signal, but
accurately denoises the underlying signal in the recording.

In future work we hope to deploy the system in clinical
conditions to evaluate its performance on abnormal ECG mor-
phologies. It is expected that some of these morphologies, such
as inverted T-waves, should be dealt with straightforwardly by
the current system, whereas conditions causing large temporal
variations, such as premature ventricular contractions and
fibrillation, will be more challenging and require adaptations.

V. CONCLUSIONS

This paper introduced a fully explainable approach for
recording and denoising time series ear-ECG signals while
stationary. Specifically, we employed in-ear microphones to
provide information about the phase of individual cardiac
cycles, allowing an Extended Kalman Filter to remove noise
from other high-amplitude biosignals and retrieve the ECG
signal, with a mean SNR improvement of 21.3 dB. These
results demonstrate the potential of the system as a base to
build passive ear-ECG monitoring upon.
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Fig. 4. Ensemble average denoised ear-ECG signal (left), ensemble average
ground truth Lead I ECG (right)
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Fig. 5. Boxplots of unprocessed ear-ECG SNR, denoised ear-ECG SNR and
improvement in SNR from processing
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