
Adapting Audio Foundation Models for Heart Sound Analysis

Carla Biermann, Jing Han, Cecilia Mascolo

University of Cambridge, Cambridge, United Kingdom

Abstract

Foundation models - large pretrained neural networks -
have shown potential for heart sound classification tasks.
However, a key question is still how to best adapt a general
audio foundation model to these tasks. This work system-
atically studies three domain adaptation techniques, freez-
ing the foundation model and training a linear layer on
top (linear probing, LP), fine-tuning (FT), and continued
pretraining (CP), on two audio foundation models using
four public heart sound databases. Our findings demon-
strate that LP alone is insufficient for heart sound analysis.
While FT improves performance over LP, it yields models
that generalise poorly to unseen datasets. To address this,
we introduce CP as a novel method for heart sounds. We
investigate three CP variants that differ only in their data
and evaluate them via subsequent LP or FT. We find that
further pretraining on the downstream dataset enhances
the learned representations and boosts LP and FT perfor-
mance the most. Combining all datasets for CP produces
a heart-sound-specific yet task-agnostic foundation model,
which improves LP and FT performance by up to 13%.
These findings underscore the importance of choosing the
correct adaptation strategy for heart sound analysis tasks.

1. Introduction

Deep learning approaches for heart sound analysis face
challenges due to the characteristics of heart sound data.
Firstly, public annotated heart sound data is sparse, with
datasets containing up to a few thousand recordings. Sec-
ondly, these datasets are heterogeneous, with variations in
recording equipment, patient populations, and recording
environments. This heterogeneity complicates the com-
bined use of multiple datasets and raises questions about
the generalisability of models trained on a single corpus.
Han et al. [1] highlighted these generalisation issues and
called for methods which can address this.

Foundation models, large neural networks pretrained
on vast amounts of data, have demonstrated potential in
solving heart sound classification tasks. Since a public
heart sound foundation model does not yet exist, likely
due to the limited availability of heart sound data, prior

works have utilised models pretrained on general audio or
on other specialised domains such as respiratory sounds.
When adapting these models, fine-tuning (FT) has been
shown to be effective [2,3]. However, fine-tuning often re-
sults in highly specialised models that perform well on the
training task but fail to generalise to other datasets. Con-
versely, using frozen foundation models as feature extrac-
tors has been shown to be less effective on the noisy CirCor
DigiScope dataset [4].

This work aims to address these challenges by provid-
ing a systematic benchmark of three domain adaptation
methods: linear probing (LP), fine-tuning (FT), and con-
tinued pretraining (CP). CP involves training the founda-
tion model from its public checkpoint on unlabelled data
using the original pretraining objective. This technique has
been used successfully in NLP [5–7] and automatic speech
recognition [8,9]. To the best of our knowledge, CP has not
been used for heart sound data. Our research is twofold:
1) to establish the performance trade-offs of LP and FT for
heart sound data, and 2) to introduce CP as a novel strat-
egy to investigate how multiple heart sound datasets can
be leveraged to train a more robust model without requir-
ing label alignment or data standardisation.

To this end, this work considers two foundation models
and four heart sound databases. We first benchmark foun-
dation model performance in the linear probing, i.e., freez-
ing the foundation model and training a simple linear head
on top, and fine-tuning scenarios. We then demonstrate
that while FT improves performance upon LP, it leads to
models that generalise poorly across different heart sound
datasets and tasks. We propose continued pretraining as a
potential solution to this limitation and study three CP sce-
narios: in-corpus (pretraining on a single dataset), cross-
corpus (on all other datasets), and all-corpora (on a com-
bination of all four datasets). The further pretrained mod-
els are then evaluated using LP and FT, respectively. Our
results show that when applying CP using only the down-
stream dataset, the foundation model learns better repre-
sentations, which boost LP performance. Moreover, all-
corpora CP results in a single, general heart sound model
that generalises well across datasets, achieving enhanced
performance in both LP and FT.



Figure 1. Overview of domain adaptation methods: linear probing (LP), fine-tuning (FT), and continued pretraining (CP).

2. Methods

Heart Sound Datasets This study uses four publicly avail-
able heart sound datasets.

The CirCor DigiScope Dataset [10], used in the 2022
PhysioNet Challenge, contains 5,272 PCG recordings
from 1,568 primarily pediatric patients collected in Brazil.
Each patient contributed up to four recordings, each from
a different valve location. The data was recorded using
electronic stethoscopes at 4 kHz. Recordings are anno-
tated with a “present”, “absent”, or “unknown” murmur
label, murmur characteristics, a clinical outcome label, and
socio-demographic information about the patient. We use
both the murmur and clinical outcome tasks in this paper.

The 2016 PhysioNet Challenge Dataset [11] com-
prises 3,240 recordings from 1,297 subjects. This highly
heterogeneous database was curated from eight datasets
collected by seven independent research groups from
seven countries over a decade in clinical and non-clinical
environments. For standardisation, all recordings were re-
sampled to 2 kHz and relabelled “normal” or “abnormal”.

The PASCAL Challenge Database [12] is made up of
two datasets. Dataset A comprises 176 phonocardiograms
collected via the iStethoscope Pro iPhone app. Dataset B
was recorded in hospitals using digital stethoscopes and
includes 656 heart sound recordings.

The ZCHSound Dataset [13] contains 941 high-
quality recordings from pediatric patients aged 2 days to 14
years and 318 low-quality, noisy recordings from neonates.
Participants include healthy individuals and those with
congenital heart disease. Each patient contributed one
recording obtained using a smart stethoscope with a sam-
pling frequency of 8 kHz.

We use three downstream tasks: CirCor Murmur, Cir-
Cor Outcome, and PhysioNet 2016. The PASCAL and
ZCHSound databases are merely used for CP.

Audio Foundation Models We chose two public foun-
dation models that support fine-tuning and continued pre-
training. The models were selected due to their strong per-
formance on other low-frequency physiological data [14].
Audio-MAE [15] is a generative model pretrained on ap-

proximately 5,800 hours of audio recordings. OPERA-CT
is a contrastively pretrained Transformer and one of three
OPEn Respiratory Acoustic (OPERA) foundation mod-
els [14]. It is pretrained on more than 400 hours of res-
piratory audio data comprising breathing, coughing, and
lung sounds, and achieves SoTA performance in respira-
tory classification tasks.

Preliminary LP and FT experiments were also con-
ducted for the HeAR [16] and CLAP [17] foundation mod-
els. HeAR is a Transformer-based model pretrained on
174,000 hours of health-related audio data, while Con-
trastive Language-Audio Pretraining (CLAP) learns audio
representations from text-audio pairs. HeAR performed
comparably to Audio-MAE and OPERA-CT in LP but
showed smaller gains after FT. CLAP achieved the high-
est performance across all downstream tasks in both LP
and FT. However, it was excluded from CP experiments,
as its text-audio pretraining does not align with our setup.
Linear Probing and Fine-tuning We first benchmark the
two audio foundation models when applying LP and FT.
Figure 1 illustrates the pipeline. We place a linear layer
(dimensions 768× no. of classes) on top of the foundation
model to judge the quality of the learnt representations by
the foundation models. LP freezes the encoder weights,
whereas FT updates them. To test the generalisability of
fine-tuned models, we fine-tune OPERA-CT on each task
and adapt it to every other task using LP.
Continued Pretraining In CP, a model is further trained
from its pretrained checkpoint on new unlabelled data. We
consider three CP scenarios (see Figure 2).
• In-Corpus CP: A model is pretrained on the unlabelled
train and validation data of a single dataset before being
adapted to that same dataset’s downstream task via LP/FT.
• Cross-Corpus CP: A model is pretrained on all but one
of the available heart sound datasets in a leave-one-out
manner and then adapted to the left-out dataset.
• All-Corpora CP: A single model is pretrained on a
combination of all four heart sound datasets, including the
train and validation set of the downstream dataset, and then
adapted to each individual downstream task.
Experiment Setup This work adheres to the official
train/val/test splits of the 2022 PhysioNet Challenge. For



Table 1. Macro AUROC performance of domain adaptation strategies on heart sound test sets. The mean and
standard deviation over 5 seeds are reported. Green cells indicate improvement after CP from baseline LP or FT. †

denotes statistically significant differences.
PhysioNet 2016 CirCor Murmur CirCor Outcome

Strategy OPERA Audio-MAE OPERA Audio-MAE OPERA Audio-MAE
LP 0.831 ± 0.000 0.831 ± 0.001 0.673 ± 0.001 0.671 ± 0.007 0.571 ± 0.005 0.593 ± 0.001
CP (in) + LP 0.844 ± 0.001† 0.922 ± 0.001† 0.688 ± 0.000† 0.756 ± 0.001† 0.573 ± 0.006 0.637 ± 0.001†

CP (cross) + LP 0.798 ± 0.001† 0.853 ± 0.002† 0.651 ± 0.001† 0.739 ± 0.008† 0.561 ± 0.002† 0.626 ± 0.003†

CP (all) + LP 0.763 ± 0.001† 0.866 ± 0.002† 0.672 ± 0.004 0.755 ± 0.001† 0.577 ± 0.006 0.639 ± 0.003†

FT 0.927 ± 0.014 0.933 ± 0.014 0.757 ± 0.007 0.744 ± 0.072 0.606 ± 0.010 0.606 ± 0.026
CP (in) + FT 0.905 ± 0.022 0.951 ± 0.010† 0.732 ± 0.012† 0.841 ± 0.007† 0.607 ± 0.008 0.625 ± 0.024
CP (cross) + FT 0.916 ± 0.012 0.949 ± 0.004 0.727 ± 0.014† 0.837 ± 0.014† 0.605 ± 0.019 0.644 ± 0.005†

CP (all) + FT 0.901 ± 0.012† 0.948 ± 0.008 0.722 ± 0.018† 0.839 ± 0.005† 0.596 ± 0.012 0.642 ± 0.003†

Table 2. Mean macro AUROC over five seeds of LP ap-
plied to baseline and fine-tuned OPERA models on three
heart sound tasks.
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Murmur 0.622 0.757 0.562
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Outcome 0.630 0.628 0.606
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CP using LP / FT using

Cross-Corpus
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Four Databases: 

Figure 2. Continued Pretraining (CP) variants using four
datasets.

the 2016 Challenge data, we used only the training set,
which we divided into train, validation, and test sets. No
pre-processing or data augmentation techniques are ap-
plied to isolate and evaluate the capabilities of audio foun-
dation models. To address the high data imbalance, a
weighted cross-entropy loss is employed in LP and FT,
with class weights set inversely proportional to their fre-
quencies. The Adam optimizer is used, and the learning
rate is reduced at each epoch to stabilise training. The pri-
mary evaluation metric used in this study is the macro AU-
ROC, computed as the unweighted average of the AUROC
per class.

3. Results

The baseline LP and FT results can be seen in Table 1.
Unsurprisingly, FT improves performance upon LP up to
12%. However, this effect is accompanied by a loss of gen-
eralisability. Table 2 shows that models fine-tuned on one
task, such as CirCor Murmur, perform worse when a linear
layer is applied to them on a different task, like PhysioNet
2016, compared to the baseline OPERA-CT model. This is
true even for tasks originating from the same dataset (e.g.,
CirCor Murmur and Outcome). This suggests that models
fine-tuned on different tasks, even within the same dataset,
learn to emphasise different features of the spectrograms.

Table 1 also shows the results of the CP experiments.
The generative Audio-MAE model benefits from all three
CP scenarios. The effect of CP on OPERA-CT is more
nuanced and depends on the task and scenario. While in-
corpus CP improves its LP performance, this gain often
disappears after FT, and in some cases, it even worsens
performance. Cross-corpus and all-corpora CP are less ef-
fective for OPERA-CT, resulting in enhanced performance
in only one case. This suggests that the effectiveness of
CP is model-specific and may depend on the pretraining
objective, data, architecture, and other factors.

Furthermore, for LP adaptation, including the down-
stream dataset in the CP phase (in-corpus and all-corpora
CP) yields better representations and superior performance
compared to excluding it. When fine-tuning, these differ-
ences disappear, and the trend sometimes is even reversed,
with cross-corpus CP models occasionally outperforming
all-corpora CP models.

4. Discussion

While in-corpus CP improves the learnt representations
most consistently, it requires further pretraining a sepa-
rate model for each dataset. A more scalable alternative
is all-corpora CP, where only one central model is further
pretrained on all data. As demonstrated by the Audio-



MAE results, this technique yields a heart sound-specific
yet task-agnostic model with enhanced performance com-
pared to the model checkpoint baselines.

A consideration for adopting CP is its computational ex-
pense, which is often more intensive than FT, especially
when combining multiple datasets for CP. While CP+LP
can perform on par with FT, they have distinct use cases.
For many distinct tasks on data from the same domain (e.g.
heart sounds), further pretraining one central model, like
all-corpora CP, and adapting it via LP might save computa-
tional power as foundation model weights are only updated
once during pretraining. This can be a great advantage in
resource-constrained settings, such as on edge devices.

A major potential of CP is its ability to learn from unla-
belled data. While this work uses labelled data and omits
the labels for unsupervised pretraining, a valuable future
direction could involve using aggregated unlabelled in-
domain data for CP. This could make more data accessi-
ble for pretraining and boost LP and FT performance in
experiments where additional unlabelled data is available.

Despite the performance gains, the adapted foundation
models in this study do not achieve state-of-the-art perfor-
mance in heart sound tasks. This may be attributed, in part,
to the use of a simple linear head for adaptation, as more
expressive heads, like a Transformer, have been shown to
significantly improve performance in related literature [4].

5. Conclusion

This paper evaluated the domain adaptation strategies
linear probing, fine-tuning, and continued pretraining of
audio foundation models for heart sound analysis. By fur-
ther pretraining the foundation models on a combination
of heterogeneous heart sound datasets, we demonstrate
the feasibility of creating a robust and generalisable heart
sound foundation model. The insights gained in this pa-
per can inform other specialised, data-sparse and hetero-
geneous domains that seek to utilise foundation models.
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