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Abstract. Energy is one of the most crucial aspects in real deployments
of mobile sensor networks. As a result of scarce resources, the duration
of most real deployments can be limited to just several days, or demands
considerable maintenance efforts (e.g., in terms of battery substitution).
A large portion of the energy of sensor applications is spent in node
discovery as nodes need to periodically advertise their presence and be
awake to discover other nodes for data exchange. The optimization of
energy consumption, which is generally a hard task in fixed sensor net-
works, is even harder in mobile sensor networks, where the neighbouring
nodes change over time.

In this paper we propose an algorithm for energy efficient node discovery
in sparsely connected mobile wireless sensor networks. The work takes
advantage of the fact that nodes have temporal patterns of encounters
and exploits these patterns to drive the duty cycling. Duty cycling is seen
as a sampling process and is formulated as an optimization problem. We
have used reinforcement learning techniques to detect and dynamically
change the times at which a node should be awake as it is likely to
encounter other nodes. We have evaluated our work using real human
mobility traces, and the paper presents the performance of the protocol
in this context.

1 Introduction

Energy efficiency is a crucial aspect in wireless sensor networks. The amount of
energy of a sensor network may be limited by the constrained size of devices or,
for instance, by the efficiency of the source of energy, e.g., the limited size of a
solar panel. In such situations, the only sensible approach to energy saving is
duty cycling, i.e., the control of the awake times of sensor nodes.

Duty cycling however, limits the ability of nodes to discover each others as
when nodes are sleeping they cannot detect contacts. The problem of neighbour
detection is even more serious if the sensor network is mobile, as the topology
in these networks changes rapidly.



Node detection is not a problem if nodes are equipped with specialized sen-
sors, such as motion detectors or accelerometers. However, these devices increase
the cost and the size of the equipment and are not always available or deployable
(e.g., in some zoological applications which need cheap or very small sensors). In
this paper we will assume that the detection of neighbours only happens through
normal short-range radio.

The existing work on duty cycling [1] has mostly tackled static networks with
fixed topologies and is not applicable to mobile scenarios, given the variability
of the topology. A major challenge for some mobile networks is the uncertainty
of the node arrival time. If the node arrival time is not known, the only chance
a node has to discover all the nodes passing by is to be always awake, which is
very energy inefficient.

MAC layer optimizations for listening times such as the ones developed in [2]
offer some form of optimization of the power consumption, however not at the
level of granularity which could be achieved with patterns recognition. A con-
siderably better optimization can be achieved by using some knowledge of the
encountering patterns in the network in order to decide when to switch on (and
off) the radio. This, of course, can only be applied when encounter patterns
exist, which however is often the case in wildlife and human applications.

In this paper we propose an energy efficient node discovery approach for mo-
bile wireless sensor networks. The main idea of our method is the online detection
of periodic patterns in node arrivals and the scheduling of wake-up activity only
when contacts are expected. The approach is based on reinforcement learning
techniques [3]. In this approach each node monitors the number of encounters
depending on time of day and concentrates more energy budget (i.e., more awake
time) into predicted busier timeslots. The approach also allows for some extra
energy to monitor other timeslots in order to cope with variation in the patterns
and to refine what it has learned, dynamically.

The approach can be applied to scenarios such as wildlife monitoring, as in-
dicated above, or human-centric networks. In order to evaluate the performance
of the approach we have verified it with real human mobility traces, used to
drive mobile sensor movement in a synthetic way, in a simulator.

The rest of the paper is organized as follows: Section 2 contains a general
overview of our approach. Section 3 contains the adaptive technique for learning
arrival patterns. Section 4 describes the protocol. Section 5 present an implemen-
tation and evaluation of our approach, respectively. Section 6 discusses related
work with conclusions and possible future work.

2 Overview of the Approach

The main goal of our approach is to allow nodes to detect each other’s presence
but, at the same time, to save energy by switching off their radio interface as
much as possible. As we outlined in the introduction, the detection of neighbours
allows many activities such as the relaying of the data to sinks and the logging
of encounters.



Discovering nodes is expensive and requires either periodic scanning (as in
Bluetooth) or periodic continuous transmission of a radio tone (if the nodes
are using a Low Power Listening based protocol [2]). A high scanning rate will
guarantee quick discovery but will waste energy, especially in situations, where
no encounters are likely to occur. On the other hand, a low scanning rate can
miss many important contacts. Specifically, the goal of the approach is to de-
vise a simple adaptive algorithm to control the scanning rate, considering past
encounter history.

We consider duty cycling as a sampling process. Intuitively, to detect more
encounters, a node needs to sample more frequently when more encounters are
expected. Moreover, the node should avoid to sample when no encounters are
expected. Thus, the goal is to maximize:

(1) R(a) = Z FE;xd;, s.t. Z d; < Dbudget

Where F; and d; is an expected number of encounters, a a duty cycle at
timeslot ¢, and Dpyqgget is a daily energy budget. As we see from the equation,
there is a balance between number of contacts and energy consumption. Thus
it seems natural to formulate the problem as a maximization of the number of
successful encounters per unit of energy consumption.

As already indicated, we consider a specific class of applications, when pe-
riodic encounter patterns exists. These represent a large class, which include
human and animal life.

3 Learning Arrival Patterns

In this section we describe the core ideas behind the pattern arrival mechanism
we adopted. The basic behaviour of the algorithm drives each node to estimate
the hourly activity of its neighbours and to progressively concentrate the discov-
ery process only when encounters are expected. Indeed, the intuitive idea behind
this behaviour is that continuously scanning for neighbours when no one will be
around implies a waste of energy.

3.1 Model

We now introduce the formal model behind the approach. An agent (in the reifi-
cation of our system, a node)? interacts with the environment through perception
and action. At each step, an agent observes the state s; € S of an environment
and responds with an action a € A(S;). The action results in a certain reward
R:SxA — R. The goal of an agent is to maximize a long-term reward based on
the interactions with an environment. Specifically, the goal is to learn a policy
mapping from states to actions that maximizes the long-term agent reward.

3 In this section we will refer to node and agents referring to the same entity: agent is
the name used in the machine learning theory we adopt.



A day is modelled as N timeslots. A node has the following set of actions:
i) sleep ii) wake-up ii) set duty cycle (1-100%). A node controls the duty cycle
by changing the discovery beacon rate. A high duty cycling might or might
not increase the chances of detecting more contacts. For example, it might be
sufficient for a node to work from 1lam to 12am, but with a 10% duty cycle (as
opposed to 100%). A reward r is the number of successful encounters. The goal
of an agent is to detect the maximum number of successful encounters within a
given energy budget.

After taking each action, a node observes the outcome and updates the pay-
off for a given timeslot. The payoff estimation is done using an exponentially
weighted moving average (EWMA) filter. The filter estimates the current payoff
value by taking into account the past measurements, r, = I'jmeqsured ¥ ¢+ Tp_1 *
(1 — @) Where r,, and r,_1 are respectively the estimated and previous payoff
values. Tyneasured 18 the measured payoff over the last time slot. The weight as-
signed to past measurements (1 — «) depends on how responsive the node has
to be to changing environment.

We now describe the balanced strategy which could be used to adapt the
node’s duty cycle and a random strategy which we will use as baseline for the
evaluation.

Balanced. In a balanced strategy we propose to dynamically adjust the
node’s duty cycle proportionally to an expected reward. Therefore the node
does mot commit to any timeslot, but spreads its energy proportionally to the
expected reward. The node sets its duty cycle according the following rule:

__ @)
(2) D(a) = S @)

D(a) is a duty cycle in the current timeslot, r(a) is an expected reward from
taking an action a. It is computed as indicated in Formula (3.1) For example, if
there are several peak hours during a day, the budget will be spread evenly among
all peaks. During quiet times the node continues to sample the environment but
with lower intensity.

Random. In a random strategy (which we use for comparison) the node
spreads its energy budget evenly throughout a day, i.e., it sends beacons with a
certain fixed interval. The strategy is equivalent to normal asynchronous wake-up
scheduling with fixed duty cycle, so would not require additional implementation.
The obvious problem with the random strategy is that a node will waste resources
when there are no nodes around. This will become evident in our evaluation.

4 Algorithm

In this section we present an algorithm for adaptive node discovery. The algo-
rithm should allow the detection of 'quiet’ periods and exclude them from the
discovery process, allowing the node to sleep in that time for as much as possible.
The daily budget assignment could be performed by the application, depending



on the known energy availability: for example in the scenario we envisage, it is
very clear how big the batteries can be and how long the zoologists want them
to last for, therefore the daily budget can be inferred.

1.

5

The node starts by following a random strategy, i.e., spreads its duty cycle
equally in each timeslot. As it discovers new nodes it dynamically reajusts
its budget according to the following steps.

. Once discovered, the nodes remain synchronized for a duration of an en-

counter. Short term synchronization is possible with built-in timers without
the need of globally synchronized clocks. As long as there is at least one
node in range, the node sends periodic keep-alive messages every Tieepative
seconds.

If a node does not hear from a neighbour for T¢,pire seconds, it assumes an
encounter is terminated and increments the timeslot counter. Cy = Cy + 1.
At the end of each day a node updates its timeslot counters M; using a
EWMA smoothing filter: M; = Cy * oo + My * (1 — «),t = 0..Ngjots. Where
M; is an estimated encounter frequency at timeslot ¢ and C; is the actual
number of encounters in timeslot ¢ registered during current day. The node
then resets the daily counters Cj.

At the beginning of the current timeslot (t), a node sets a beacon rate to
be: Fyeacon = % Ebfuun' Where B is a daily energy budget, Epcqcon is an
amount of energy required to scan the neighbourhood. The node converts the
beacon frequency into interval time between beacons Tyeacon = 1/Fpeacon- If
the duration of this period is longer than the timeslot duration Ti;mesiot, the
node beacons with a probability p = % The node then schedules the
next wake up by the beginning of the next timeslot. The node has preconfig-
ured minimum and maximum beacon rates F,;, and F},q.z. The minimum
beacon rate is needed to guarantee a certain level of exploration, even when
no discovery is expected. The maximum beacon rate limits the amount of
energy a node spends in one timeslot.

Evaluation

The goal of experiments is to compare the random and adaptive algorithms
presented in Section 4 on the performance of two basic applications: encounter
tracking and message dissemination.

5.1 Evaluation Settings

Dataset. We evaluated our approach through simulations in TOSSIM with real
human connectivity traces to emulate node mobility and dynamic encountering.
We used human mobility traces from MIT reality mining bluetooth traces [4] to
drive the sensor movement like their were tagged individuals. The traces were
collected using 96 people carrying Bluetooth mobile phones over a duration of
292 days. The evaluation was done on 60 more active nodes over 3 months
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of traces. Due to power limitations, the original traces are result of sampling
every 300s, which might have missed some encounters and introduced a certain
granularity of encounter duration. In this paper, however, we assume that the
traces represent ground truth data about physical movement of entities and that
our optimal result would be to detect all contacts. All the nodes were booted at
random times between 0 and 3600 seconds. The evaluation was done over 5 runs
for each algorithm x budget combination.

Impact on discovery rate. In the first experiment we measure encounters
between the nodes for various wake-up algorithms and compare with a baseline
random algorithm over synthetic traces in the following settings. We generated
7200 random encounters for 36 nodes for a duration of 90 days. The duration
of each encounter was uniformly distributed between 300 and 900s. To model
dynamic environment the network operated according to one of two schedules.
In schedule A, all the links were established between times 8am and 3pm; in
schedule B, all the encounters were established between times 22pm and 5am.
We then generated a trace, where both schedules alternated every 10, 20, 30
and 40 days. All nodes were running encounter tracking application and were
required to detect and log encounters between the nodes. The beaconing is the
expensive process which requires nodes to stay up for a long period of time.
In our experiments we measure the energy a node spends on beaconing (node
discovery) on the performance of basic applications of encounter logging.

Figure 1a shows that the nodes running adaptive strategy managed to detect
almost the same number of encounters as nodes running random strategy. At
the same time, the adaptive strategy required up to 50% fewer beacons than a
random one (Figure 1b). The performance degraded with more frequent schedule
changes, but remained higher than random.

In the second experiment we measure encounters between the nodes over the
real traces from MIT reality mining experiments. In the course of experiments,
we observed that the number of detected encounters of the adaptive algorithm
depends on the maximum and the minimum number of beacons in one timeslot.
In the experiment we set it to maximum of 200% and 10% of average (budgeted)
scanning rate. All the graphs show the percentage of encounters detected by the
2 algorithms over the total number of encounters in the traces. We then tested
the algorithm sensitivity for different timeslot durations and found that longer
timeslots perform better for lower scanning rates. In the following experiments



* Random * Random
\ - \\\—*«Ai

— T L e L
7200 21600 36000 50400 64800 7200 21600 36000 50400 64800

Encounter rate
0 5 10 15 20

0 2 4 6 8

Beacons per Encounter

Beacon Period Beacon Period

(a) Encounters (b) Beacons per Encounter

* Random * Random
8 % Basic B Basic
P s ] \\\,/\
g - |
ER _— g
7200 2000 96000 s0i00  o4e0 7200 21000 600 s0s00  o4eo
Beacon Period Beacon Period
(c) Deliveries (d) Beacons per Delivery

Fig. 1: Impact on node discovery and message delivery rates.

the nodes used 1 hour timeslots for scanning rates up to 3600 and 3 hour timeslots
for lower scanning rates.

Figures 1a shows the number of detected encounters for scanning intervals
from 7200 to 79200 seconds. The graph shows that the adaptive strategy detects
more encounters than simple random strategy. It shows that while adaptive
detected more encounters, they consumed much fewer beacons (Figure 1b).

Impact on message delivery rate. In this experiment we measure the
impact of wake-up strategy on message delivery rates for a simple data collection
application. The nodes are using a direct delivery algorithm, in which a sender
delivers a message directly upon an encounter with a destination node (e.g., a
sink in our scenario). The nodes were configured to generate one message per
hour and send it towards one of six sinks in MIT reality mining traces. The
message was considered delivered when it reached at least one of the sinks. The
sinks were chosen randomly at each simulation run. All the graphs show the
delivery rate in percentage from the total number of generated messages.

Figure 1c shows the number of detected message deliveries for scanning inter-
vals from 7200 to 79200 seconds. The adaptive strategy provides better results
than simple random strategy. Figure 1d shows the average number of beacon per
delivery for the same experiment. It shows that while adaptive provides higher
delivery rates, it consumed much fewer beacons.

It is interesting to note that at a beacon rate of one beacon per day, adaptive
strategy still maintains a delivery rate of about 40%, more than twice that of
random strategy while consuming twice as few discovery beacons.



6 Related work and Conclusion

Energy efficient service discovery can be done using power efficient wake-up
scheduling protocols, such as [1, 2]. These protocols allow for very energy efficient
communication in static wireless sensor networks. They are not, however, able
to exploit the fact that contact patterns might be regular and distributed in
such a way that there are periods in which nodes do not encounters other nodes.
Our approach works on top of existing wake-up scheduling protocols, allowing
them to make better decisions as to when to and how frequently to perform
service discovery. In [5] an adaptive node discovery approach is proposed for
static sink nodes to track mobile objects: some learning techniques have been
used there to drive the discovery, however the network of sensors for that paper
was static not allowing for the variability inherent in a mobile sensor network.
A wariable inquiry rate has been used to collect Bluetooth traces in [6]. To save
power the nodes were configured to sample the neighbourhood more frequently
when no nodes are detected and then reduce the sampling rate if there are nodes
around. Although an approach was used to actually collect traces, there was no
evaluation quantifying an impact of this technique on the number of detected
encounters.

We have presented an approach for flexible duty cycling for mobile wireless
sensor networks. We have evaluated the approach with realistic human mobility
traces and have shown the performance of our proposed approach with respect
to a random wake up scheduling. We are in the process of generalization of
the approach to non-periodic patterns. In this case, the node needs to forecast
the encounter pattern for the next N steps and then allocate energy budget
accordingly.
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