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Abstract

Accurately estimating energy expenditure (EE) is crucial for under-

standing exercise efficiency, managing fitness goals, andmonitoring

health conditions. Existing wearable systems either rely primarily

on heart rate and motion sensors, resulting in unsatisfactory accu-

racy, or require bulky setups such as thermal cameras to improve

performance by integrating more physiological information, which

limits real-world applicability. We present EarCalo, an earable-

based system that leverages in-ear audio sensing to estimate EE

during running. The system extracts airflow-induced acoustic vari-

ations within the ear canal and employs a deep neural network

to translate these subtle in-ear sound dynamics into EE estimates.

The key insight is that in-ear acoustic signals can capture multiple

physiological factors such as breathing and cardiovascular activity,

while also reflecting motion-related cues like running intensity.

These rich acoustic cues are closely related to EE and provide a uni-

fied sensing modality for estimation. We evaluated EarCalo on 21

participants running at varying speeds using a mixed-user setting.

EarCalo achieved a mean absolute error (MAE) of 0.67 kcal/min, a

mean absolute percentage error (MAPE) of 11.98%, and a Pearson

correlation of 0.945, which achieves accuracy close to established

physiological standards. This work represents an early step toward

practical and personalized earable-based EE estimation in everyday

settings.

CCS Concepts

•Human-centered computing→Ubiquitous andmobile com-

puting.
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Figure 1: EarCalo uses the in-ear microphones of earphones

to capture physiological and motion-related sounds for en-

ergy expenditure monitoring.
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1 Introduction

Energy expenditure (EE) refers to the amount of energy con-

sumed by the body to maintain essential physiological functions

and perform physical activities [9, 27]. EE generally includes resting

metabolism, the energy required for food digestion, and the energy

spent during voluntary movement or exercise [9]. Among these

components, exercise-related EE is the most dynamic and directly

reflects how the body responds to physical activity [14]. Accurate es-

timation of EE during exercise is crucial for understanding workout

efficiency, managing fitness goals, and assessing health conditions

such as obesity, diabetes, and cardiovascular disease [14, 32].

Existing EE estimation solutions span laboratory-grade meth-

ods to consumer-grade wearables. Direct calorimetry, which mea-

sures heat output, provides gold-standard accuracy but requires

sealed chambers and is unsuitable for real-world exercise [20].

Indirect calorimetry, which estimates EE from oxygen consump-

tion and carbon dioxide production, offers practical reference ac-

curacy but depends on bulky respiratory masks and gas analyz-

ers [1, 20]. Consumer-grade wearables such as accelerometers and

photoplethysmography (PPG) sensors on smartwatches are com-

pact and accessible but often inaccurate. Studies show that such

devices can deviate by more than 40% from true EE values due to

their limited physiological sensing scope and reliance on heuristic

models [2, 4, 10, 13]. Recent advances [2] integrate thermal imaging
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with respiration sensing to improve EE estimation accuracy during

cycling and running. However, these systems still rely on cameras

that are bulky, sensitive to lighting and occlusion, and raise privacy

concerns.

Motivated by the need for accurate yet practical energy expendi-

ture monitoring, we explore earable sensing as a new opportunity

for this task. The ear is a compact and stable location that is al-

ready instrumented in everyday life through earphones, providing

a natural platform for unobtrusive physiological sensing [5, 7, 8, 16–

18, 21, 30, 33]. We present EarCalo, the first earable-based system

that leverages in-ear audio sensing to estimate EE during running.

The system captures airflow-induced acoustic variations inside the

ear canal and uses a deep neural network to map these subtle sound

dynamics to energy expenditure. The key intuition is that in-ear

acoustics inherently encode multiple physiological processes that

are directly linked to EE. Prior studies have demonstrated that in-

ear audio can capture respiratory airflow, cardiovascular pulsation,

and motion-induced vibrations [6, 22, 23, 31, 34, 35]. These signals

respectively reveal oxygen uptake and metabolic rate, reflect blood

flow and oxygen transport, and indicate the mechanical effort ex-

erted by the body [20]. By integrating these complementary factors

through a single, compact modality, EarCalo provides a unified

view of physical exertion for accurate EE estimation.

To evaluate this idea, we collected data from 21 participants

running at different speeds using in-ear microphones synchronized

with indirect calorimetry (VO2 Master Analyzer mask [1]) as the

ground truth. We trained a general model across all participants to

capture diverse acoustic and physiological patterns and evaluated

it on unseen data from these participants. Our analysis demon-

strates that EarCalo achieves a MAE of 0.67 kcal/min, a MAPE of

11.98%, and a Pearson correlation of 0.945 with calorimetry-based

EE estimates. A MAPE below 10% is typically considered satisfac-

tory [19, 25, 28], and our results approach this standard. Overall,

this work represents an early step toward enabling practical and

personalized earable-based EE estimation in everyday settings.

In summary, this work makes the following contributions:

• We present EarCalo, the first system to investigate in-ear acous-

tic sensing for estimating energy expenditure during running.

We recognize that in-ear acoustics provide a unified channel

capturing multiple physiological processes closely related to EE.

• We develop a deep learning model that translates subtle ear-canal

acoustic dynamics into accurate energy expenditure estimates

validated against indirect calorimetry.

• We evaluate EarCalo through a 21-participant study using a

mixed-user setting, demonstrating that our system can achieve

accuracy close to established standards while maintaining com-

fort, mobility, and everyday usability.

2 Background

2.1 Energy Expenditure

Energy expenditure (EE) quantifies the amount of energy the body

uses to sustain life and perform physical activity. It reflects an

individual’s overall metabolic state and is commonly represented as

the total energy expenditure (TEE) [9]. TEE comprises several

physiological components:

Breathing

Heartbeat

Footsteps

Figure 2: Spectrograms of in-ear audio.

• Resting Energy Expenditure (REE): the baseline energy re-

quired to maintain vital physiological functions such as circula-

tion, respiration, and cellular metabolism.

• Diet-Induced Energy Expenditure (DEE): the energy con-

sumed to digest, absorb, and metabolize nutrients.

• Activity-Related Energy Expenditure (AEE): the additional

energy spent on voluntary physical activity, varying widely de-

pending on activity type, intensity, and duration.

During exercise, total energy expenditure increases substantially

as the body’s metabolic demand rises to supply oxygen and nutri-

ents to active muscles and to maintain thermoregulation. Reliable

TEE estimation under exercise provides a direct measure of phys-

ical workload and metabolic efficiency [14, 32]. It enables users to

understand how their bodies respond to different exercise inten-

sities, manage calorie balance, and design personalized training

programs. Beyond personal fitness, it supports clinical assessment

of metabolic health, rehabilitation progress, and cardiovascular

function [14, 32]. At a broader scale, large-scale and continuous EE

tracking can inform studies on population health, lifestyle behavior,

and the prevention of metabolic diseases.

2.2 Energy Expenditure from the Ear

The ear presents an ideal sensing location for monitoring EE due

to the following reasons.

Physiological accessibility. The ear is anatomically close to

key physiological pathways, including the carotid artery and upper

airway, enabling access to rich biosignals such as heart rate, heart-

beat output, and respiration [6, 15, 22, 23, 31]. In-ear microphones

benefit from the occlusion effect, allowing the detection of subtle

acoustic variations caused by airflow and vascular pulsations [6, 31].

These signals are directly linked to oxygen intake, cardiac output,

and metabolic rate.

Motion sensing. In-ear microphones can also capture motion-

related cues during exercise as body vibrations propagate through

the ear canal via bone conduction [12, 22–24]. These acoustic vari-

ations reflect physical activity intensity.

We validated these observations as shown in Figure 2. The left

figure shows in-ear spectrograms when the user is stationary with

moderate breathing. Distinct frequency patterns corresponding

to breathing cycles and heartbeat pulses confirm that in-ear mi-

crophones capture both respiratory and cardiovascular activities.

When the user begins running (right), rhythmic footstep patterns

dominate, indicating that the in-ear signal also reflects motion

intensity.

Relevance to energy expenditure. Energy expenditure is

driven by multiple physiological and behavioral processes, includ-

ing respiration rate, cardiovascular effort, and body motion [20].

The ear uniquely provides access to all three, allowing a single
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Figure 3: EarCalo architecture.

sensing location to capture multimodal cues that reflect the body’s

overall exertion level.

By leveraging in-ear audio sensing, EarCalo unifies respiration,

cardiovascular, and motion information within a compact and prac-

tical wearable form factor, namely earbuds that are already widely

adopted and provide a natural, unobtrusive sensing platform for

EE estimation.

3 System Design

3.1 Overview

EarCalo estimates energy expenditure (EE) from in-ear acoustic

signals through the pipeline shown in Figure 3. The system takes

synchronized left- and right-channel in-ear audio as input and pro-

duces an EE estimate as output. Each audio segment is first prepro-

cessed to emphasize relevant physiological and motion information,

then encoded into high-level acoustic embeddings through an audio

encoder. These embeddings capture respiratory and cardiovascu-

lar modulations as well as motion-induced vibrations associated

with running intensity. A convolutional neural network (CNN) and

multilayer perceptron (MLP) jointly serve as the predictor, trans-

forming the embeddings into an EE value representing the caloric

expenditure rate (kcal/min).

3.2 Preprocessing

Raw in-ear audio is segmented into fixed-length windows (12s)

without overlap. Each segment is transformed into a compact time–

frequency representation as follows:

• Log-Mel spectrogram extraction:We compute log-Mel spec-

trograms with 64 Mel bins spanning 50 Hz–8 kHz using a 1024-

point window and a 320-point hop size. This configuration ef-

fectively preserves the fine-grained physiological and motion

variations encoded in in-ear acoustics: frequencies near 50 Hz

correspond to cardiac pulsations [6], the 50–150 Hz band reflects

footstep and body-vibration components [22], and higher fre-

quencies capture airflow turbulence and harmonic structures of

respiration.

• Channel pairing: Spectrograms from the left and right in-ear

microphones are temporally aligned and stacked to form a syn-

chronized two-channel input tensor.

This preprocessing preserves fine-grained acoustic variations as-

sociated with respiration, cardiovascular pulsations, and motion-

induced vibrations, providing rich multimodal cues for downstream

EE estimation.

3.3 Audio Encoder

To obtain robust and transferable representations from limited

labeled data, EarCalo fine-tunes a Contrastive Language–Audio

Pretraining (CLAP) encoder [11] pretrained on large-scale sound

datasets. CLAP converts each time–frequency input into a 1024-

dimensional embedding, capturing temporal and spectral cues of the

in-ear audio. Separate embeddings are extracted from the left and

right channels and concatenated into a 2×1024 matrix representing

both ear-specific and shared acoustic dynamics.

During fine-tuning, the encoder is adapted to the in-ear acoustic

domain and optimized to align its feature representations with

the patterns underlying energy expenditure. This process adjusts

the pretrained feature space to emphasize acoustic variations that

correlate with physical exertion level, enabling EarCalo to generate

representations that are discriminative for EE estimation while

preserving the generalization benefits of large-scale pretraining.

3.4 Energy Expenditure Predictor

The concatenated embeddings are passed through a lightweight

CNN followed by MLP layers to estimate EE:

• Convolutional fusion: The first 2D convolution uses a kernel

size of (2, 3), spanning both ear channels and three neighboring

embedding dimensions. This operation performs early channel

fusion while learning local feature correlations that reflect subtle

differences in spectral and physiological characteristics encoded

by the embeddings.

• Hierarchical encoding: A subsequent convolution with kernel

size (1, 3) further abstracts local dependencies along the embed-

ding dimension while preserving the fused channel representa-

tion. Each convolutional layer is followed by ReLU activation,

batch normalization, and max pooling to enhance stability and

generalization.

• Regression head: The resulting feature map is flattened and

passed through a compact multilayer perceptron with one hidden

layer and dropout regularization, projecting the learned represen-

tation into a single scalar output corresponding to EE (kcal/min).

The model is trained end-to-end using mean squared error (MSE)

loss between the predicted EE 𝐸𝑖 and the ground-truth calorimetry

value 𝐸𝑖 :

LMSE =
1

𝑁

𝑁∑

𝑖=1

(𝐸𝑖 − 𝐸𝑖 )
2, (1)

where 𝑁 is the number of training samples. This objective encour-

ages accurate per-window EE estimation while allowing the convo-

lutional stack to learn stable inter-channel and and feature-space

relationships in the embeddings.

4 Evaluation

4.1 User Study

To evaluate EarCalo, we conducted a controlled treadmill studywith

21 healthy participants. The in-ear microphones were synchronized

with a VO2 Master Analyzer mask [1], which served as the ground

truth (GT) device. All procedures were approved by the institutional

ethics committee, and informed consent was obtained from all

participants.

Custom Earbuds. As commercial Active Noise Cancellation

(ANC) earphones do not provide access to raw in-ear microphone

data, we developed a custom hardware prototype for data collection.

Figure 4 (top left) shows the device, which consists of a pair of

earphones embedded with miniature in-ear microphones (Knowles
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Figure 4: Experimental setup. Participants wore custom ear-

phones with in-ear microphones and a VO2 Master mask for

reference EE measurement while running on a treadmill.

SPU1410LR5H-QB) facing the ear canal to capture acoustic signals.

The microphones were connected to a Raspberry Pi 4 equipped

with a custom PCB and audio codec board, housed in a lightweight

chest pouch for portability. Audio was sampled at 44.1 kHz.

Ground Truth (GT) Device. For ground truth, we used the VO2

Master Analyzer mask [1] (Figure 4, bottom left), a mobile indirect

calorimetry device that estimates oxygen uptake and carbon dioxide

output, enabling real-time EE calculation (kcal/min). The mask was

calibrated before each session using a 3 L reference syringe. Syn-

chronization between the earphones and GT data was performed

manually by aligning the timestamps of distinct deep-breathing

events recorded before running.

Procedure. Each recording session lasted approximately 10 min-

utes of treadmill running (Figure 4, right). Participants ran at two

self-selected speeds: a comfortable pace (light jog) and a faster

pace (moderate to high exertion), each for 5 minutes. This design

induced varying EE levels. No specific breathing rhythm or run-

ning style was imposed, ensuring that the dataset captured natural,

unconstrained physiological behavior.

Participants.We recruited 21 participants, including 9 female

and 12 male, aged 23–53 years (mean=29.0, SD=6.9), with body

mass indices (BMI) ranging from 18.0 to 30.8 kg/m2. Several partici-

pants were regular runners, while others had limited exercise habits,

providing a diverse range of aerobic fitness levels and metabolic

responses. The running speeds ranged from 3 km/h to 12 km/h

(mean=6.35, SD=1.82), covering light to vigorous running condi-

tions. In total, we collected near 210 minutes of synchronized in-ear

audio and ground-truth EE data. The calorimetry-derived EE values

ranged from 0.67 to 17.6 kcal/min across participants and conditions,

reflecting different running intensities. The diversity in individual

physiology and exercise levels provides a comprehensive dataset

for training and evaluating EarCalo.

4.2 Implementation

We trained and evaluated EarCalo under a mixed-user setting,

where audio segments from all participants were pooled together

and randomly divided into 80% for training and 20% for testing.

This setting allows the model to learn general acoustic–EE patterns

across users while still evaluating on unseen segments to assess gen-

eralization. Each audio segment was labeled with its corresponding

energy expenditure value obtained from the ground truth device.
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Figure 5: Performance of EarCalo on unseen test segments

under mixed-user evaluation setting.

In practice, a user could obtain several minutes of personalized

calibration data (e.g., through a brief supervised session in a clinic

or gym equipped with a calorimetry reference device) to fine-tune

the model for individual physiology. This adaptation would enable

more accurate long-term EE estimation tailored to each user.

All models were implemented in PyTorch using the 2023 version

of CLAP [11] as the pretrained audio encoder. The network was

optimized using Adam with a learning rate of 1 × 10−5, batch size

of 32, and dropout ratio of 0.1.

4.3 Performance

Evaluation Metrics.We evaluated EarCalo using three standard

regression metrics that quantify estimation accuracy and consis-

tency with the ground-truth EE values:

• Mean Absolute Error (MAE): the average absolute difference be-

tween predicted and reference EE values (kcal/min).

• Mean Absolute Percentage Error (MAPE): the average absolute

error divided by the ground truth (%).

• Pearson Correlation Coefficient (r): the linear correlation between

predicted and reference EE, where 𝑟 = 1 indicates perfect agree-

ment.

Overall Performance. Figure 5 shows the overall performance

of EarCalo. The system achieves a MAE of 0.67 kcal/min and a

MAPE of 11.98% when evaluated on unseen test segments under

mixed-user evaluation setting. Prior studies [19, 25, 28] consider

a MAPE below 10% to be satisfactory for energy expenditure es-

timation, and our results are close to this level of accuracy. The

scatter plot illustrates the relationship between predicted and ref-

erence EE values, revealing a strong linear trend with a Pearson

correlation coefficient of 𝑟 = 0.945. The estimates closely follow

the ground truth across the full EE range, with only a few isolated

outliers. Furthermore, the errors are evenly distributed around the

identity line, suggesting that the model does not exhibit systematic

overestimation or underestimation tendencies.

5 Discussion and Future Work

Model and representation design. EarCalo shows that in-ear

acoustics contain rich information reflecting respiration, heartbeat,
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and motion dynamics, all of which are closely related to energy

expenditure. However, the current model processes these compo-

nents together without explicitly distinguishing their physiological

origins. Future work will investigate architectures that can separate

and integrate these complementary sources more effectively. For

instance, multi-branch or attention-based models could individu-

ally encode respiratory, cardiovascular, and motion-related features

and then combine them through a learned fusion module. This

design would allow the network to emphasize the relative contri-

bution of each physiological factor, leading to more interpretable

and accurate estimation.

Activity scope. The current evaluation focuses on treadmill

running, which provides controlled conditions with stable environ-

ments and consistent motion. Real-world exercise, however, spans

a wider range of activities and movement contexts. Extending the

study to other exercise types such as walking, cycling, stair climb-

ing, high-intensity interval training, and weight training will help

assess how in-ear acoustics reflect energy expenditure across differ-

ent intensities and exercise forms. This will also test the robustness

of EarCalo under outdoor variability (e.g., posture changes, ambi-

ent noise, and diverse individual exercise styles). Our future work

will extend the design and evaluation to outdoor settings and a

broader activity set, and report performance across intensities to

characterize failure modes and generality.

ParticipantDiversity andGeneralization.Our study included

21 healthy adults covering a wide range of ages (23 to 53 years),

BMI (18.0 to 30.8 kg/m2), and fitness levels (both regular runners

and non-runners). In the current implementation, we trained and

evaluated EarCalo using a mixed-user setting, where audio seg-

ments from all participants were pooled and randomly divided

into training and testing sets. This configuration mainly evaluates

the model’s overall predictive capability rather than its ability to

generalize to unseen individuals.

Physiological responses to exercise and the resulting acoustic

signatures can vary considerably across people, particularly among

older adults or those with respiratory or cardiovascular conditions.

To gain an initial understanding of cross-user generalization, we

conducted a preliminary leave-one-subject-out (LOSO) evaluation,

which yielded a MAE of 1.59 kcal/min and a MAPE of 25.57%. These

results show that while the mixed-user model captures general pat-

terns effectively, its performance decreases when applied to unseen

users, reflecting the challenge of inter-individual variability. Future

work will involve recruiting a larger and more diverse participant

cohort to further study this variability and explore methods that

balance generalization and personalization. Incorporating user de-

mographic attributes such as age, sex, or BMI into the model may

also help explain physiological differences and improve generaliza-

tion across users. In addition, domain adaptation and meta-learning

techniques may enhance cross-user robustness, while lightweight

user-specific calibration using a few minutes of labeled data could

further refine individual performance.

Robustness in in-the-wild conditions. In-the-wild operation in-

troduces additional confounders for in-ear audio sensing, including

environmental noise (e.g., wind/traffic), earbud fit variation due to

sweat and motion, and concurrent audio playback. Although the

occluded ear canal provides partial isolation from ambient sound,

fit changes and playback leakage can still distort physiological cues.

Our future work will explicitly stress-test these factors and improve

robustness via (i) noise/playback-aware augmentation and training,

and (ii) signal-quality estimation to detect poor-fit/noisy segments.

Systems considerations on COTS earables. Practical deploy-

ment on commodity earbuds requires an end-to-end systems de-

sign that balances accuracy with latency, energy, memory, and

communication overhead. We plan to profile the full pipeline un-

der two representative implementations: on-earbud inference and

earbud-to-phone offloading. This includes quantifying the trade-

off between streaming raw audio versus transmitting compact fea-

tures/embeddings, andmeasuring the corresponding energy/latency

costs.Wewill alsomove toward a fully wireless prototype to capture

realistic communication overhead and evaluate adaptive policies

(e.g., activity- and quality-aware sampling/compute) that reduce

battery impact while maintaining accuracy.

6 Related Work

Laboratory-grade Methods. Accurate measurement of energy

expenditure (EE) traditionally relies on calorimetry-based methods.

Direct calorimetry measures the body’s heat output within a sealed

chamber, providing gold-standard precision but being impractical

for everyday use [20]. Indirect calorimetry, which estimates EE

based on oxygen consumption and carbon dioxide production, pro-

vides reliable reference accuracy but requires bulky equipment such

as respiratory masks and gas analyzers [1, 20]. These systems are

therefore restricted to laboratory or clinical environments rather

than real-world exercise scenarios.

Consumer-gradeWearables.Modern wearables such as Apple

Watch and Fitbit, as well as existing research prototypes, typically

estimate EE using accelerometers and PPG sensors [2]. While light-

weight and accessible, these methods rely on activity-dependent

or heuristic models and often exhibit high inter-device variability

and limited accuracy [2, 4, 10, 13]. Multisensor approaches, such as

combining an Inertial Measurement Unit (IMU) with ECG [26] or

deploying multiple IMUs on different body parts [29], can improve

accuracy but usually require several electrodes or sensors, reducing

comfort and everyday usability. Other studies have explored laser-

and camera-based sensing of chest motion [3], but these systems

remain sensitive to body movement. Recent work such as Joules-

Eye [2] leverages wearable thermal imagery to capture respiration

for EE estimation during running and cycling, demonstrating that

integrating richer physiological cues can improve performance.

However, such systems still require users to keep the camera facing

the face, which increases effort and raises usability and privacy

concerns in daily exercise contexts.

EarCalo explores a new sensing locus and modality using in-

ear acoustics captured by earbuds. It naturally fits mobile exercise

scenarios where users already wear earphones, and the ear canal

provides a compact, privacy-preserving site that simultaneously

captures respiration, cardiovascular pulsations, andmotion-induced

vibrations, enabling unified inference from a single, everyday form

factor.

7 Conclusion

This paper presents an early exploration into a practical and reliable

wearable-based approach for estimating energy expenditure during
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exercise. We introduced EarCalo, an earable-based system that esti-

mates energy expenditure during running by leveraging airflow-

and vibration-induced acoustic variations inside the ear canal. To

our knowledge, this is the first work to demonstrate that earphones

can support accurate energy expenditure estimation. The system

offers a compact and natural form factor that integrates respiratory,

cardiovascular, and motion information for metabolic estimation.

Our 21-participant study shows that EarCalo achieves a MAPE of

11.98%, which achieves accuracy close to established physiological

standards. These findings highlight the potential of earable devices

as a physiologically grounded and unobtrusive platform for practi-

cal energy expenditure monitoring. Future work will explore more

expressive model architectures, a wider range of exercise scenarios,

and adaptive methods for addressing inter-user variability.

Acknowledgements

This research was supported by ERC project 833296 and EPSRC

grant EP/Z53447X/1. The research was conducted during the first

author (Y.L.)’s appointment at the University of Cambridge.

References
[1] 2025. VO2 Master. https://vo2master.com/.
[2] Rishiraj Adhikary, Maite Sadeh, Nipun Batra, and Mayank Goel. 2024. Jouleseye:

Energy expenditure estimation and respiration sensing from thermal imagery
while exercising. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 7, 4 (2024), 1–29.

[3] Hirooki Aoki and Hidetoshi Nakamura. 2018. Non-contact respiration measure-
ment during exercise tolerance test by using kinect sensor. Sports 6, 1 (2018),
23.

[4] Rob Argent, Megan Hetherington-Rauth, Julie Stang, Jakob Tarp, Francisco B
Ortega, Pablo Molina-Garcia, Moritz Schumann, Wilhelm Bloch, Sulin Cheng,
Anders Grøntved, et al. 2022. Recommendations for determining the validity of
consumer wearables and smartphones for the estimation of energy expenditure:
expert statement and checklist of the INTERLIVE network. Sports Medicine 52, 8
(2022), 1817–1832.

[5] Jacob Brown, Yang Liu, and Cecilia Mascolo. 2023. Yawning Detection using
Earphone Inertial Measurement Units. In Proceedings of the 2nd Workshop on
Smart Wearable Systems and Applications. 7–13.

[6] Kayla-Jade Butkow, Ting Dang, Andrea Ferlini, Dong Ma, Yang Liu, and Cecilia
Mascolo. 2024. An evaluation of heart rate monitoring with in-ear microphones
under motion. Pervasive and Mobile Computing 100 (2024), 101913.

[7] Justin Chan, Antonio Glenn, Malek Itani, Lisa R Mancl, Emily Gallagher, Randall
Bly, Shwetak Patel, and Shyamnath Gollakota. 2023. Wireless earbuds for low-
cost hearing screening. In Proceedings of the 21st Annual International Conference
on Mobile Systems, Applications and Services. 84–95.

[8] Tao Chen, Yongjie Yang, Xiaoran Fan, Xiuzhen Guo, Jie Xiong, and Longfei
Shangguan. 2024. Exploring the feasibility of remote cardiac auscultation using
earphones. In Proceedings of the 30th Annual International Conference on Mobile
Computing and Networking. 357–372.

[9] James P DeLany and Jennifer C Lovejoy. 1996. Energy expenditure. Endocrinology
and metabolism clinics of North America 25, 4 (1996), 831–846.

[10] Peter Düking, Laura Giessing, Marie Ottilie Frenkel, Karsten Koehler, Hans-
Christer Holmberg, Billy Sperlich, et al. 2020. Wrist-worn wearables for moni-
toring heart rate and energy expenditure while sitting or performing light-to-
vigorous physical activity: validation study. JMIR mHealth and uHealth 8, 5 (2020),
e16716.

[11] Benjamin Elizalde, Soham Deshmukh, and Huaming Wang. 2024. Natural lan-
guage supervision for general-purpose audio representations. In ICASSP 2024-2024
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 336–340.

[12] Andrea Ferlini, Dong Ma, Robert Harle, and Cecilia Mascolo. 2021. EarGate:
gait-based user identification with in-ear microphones. In Proceedings of the 27th
Annual International Conference on Mobile Computing and Networking. 337–349.

[13] Daniel Fuller, Emily Colwell, Jonathan Low, Kassia Orychock, Melissa Ann Tobin,
Bo Simango, Richard Buote, Desiree Van Heerden, Hui Luan, Kimberley Cullen,
et al. 2020. Reliability and validity of commercially available wearable devices
for measuring steps, energy expenditure, and heart rate: systematic review. JMIR
mHealth and uHealth 8, 9 (2020), e18694.

[14] Andrew P Hills, Najat Mokhtar, and Nuala M Byrne. 2014. Assessment of physical
activity and energy expenditure: an overview of objective measures. Frontiers in

nutrition 1 (2014), 5.
[15] Changshuo Hu, Thivya Kandappu, Yang Liu, Cecilia Mascolo, and Dong Ma. 2024.

Breathpro: Monitoring breathing mode during running with earables. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 8, 2 (2024),
1–25.

[16] Changshuo Hu, Thivya Kandappu, Jake Stuchbury-Wass, Yang Liu, Anthony
Tang, Cecilia Mascolo, and DongMa. 2024. Detecting Foot Strikes during Running
with Earbuds. In Proceedings of the Workshop on Body-Centric Computing Systems.
35–40.

[17] Changshuo Hu, Qiang Yang, Yang Liu, Tobias Röddiger, Kayla-Jade Butkow,
Mathias Ciliberto, Adam Luke Pullin, Jake Stuchbury-Wass, Mahbub Hassan,
Cecilia Mascolo, et al. 2025. A Survey of Earable Technology: Trends, Tools, and
the Road Ahead. arXiv preprint arXiv:2506.05720 (2025).

[18] Tamisa Ketmalasiri, Yu Yvonne Wu, Kayla-Jade Butkow, Cecilia Mascolo, and
Yang Liu. 2024. IMChew: ChewingAnalysis using Earphone Inertial Measurement
Units. In Proceedings of the Workshop on Body-Centric Computing Systems. 29–34.

[19] Shenglong Le, Xiuqiang Wang, Tao Zhang, Si Man Lei, Sulin Cheng, Wu Yao, and
Moritz Schumann. 2022. Validity of three smartwatches in estimating energy
expenditure during outdoor walking and running. Frontiers in Physiology 13
(2022), 995575.

[20] James A Levine. 2005. Measurement of energy expenditure. Public health nutrition
8, 7a (2005), 1123–1132.

[21] Jiao Li, Yang Liu, Tao Sun, Ziheng Zhou, and Jin Zhang. 2025. Earable-based
Continuous Blood Pressure Monitoring via a Single-Point Flexible Sensor. In
Companion of the 2025 ACM International Joint Conference on Pervasive and
Ubiquitous Computing. 828–833.

[22] Yang Liu, Kayla-Jade Butkow, Jake Stuchbury-Wass, Adam Pullin, Dong Ma, and
Cecilia Mascolo. 2025. Respear: Earable-based robust respiratory rate monitoring.
In 2025 IEEE International Conference on Pervasive Computing and Communications
(PerCom). IEEE, 67–77.

[23] Yang Liu, Qiang Yang, Kayla-Jade Butkow, Jake Stuchbury-Wass, Dong Ma, and
Cecilia Mascolo. 2025. EarMeter: Continuous Respiration Volume Monitoring
with Earables. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 9, 4 (2025), 1–29.

[24] Dong Ma, Andrea Ferlini, and Cecilia Mascolo. 2021. Oesense: employing occlu-
sion effect for in-ear human sensing. In Proceedings of the 19th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services. 175–187.

[25] M Benjamin Nelson, Leonard A Kaminsky, D Clark Dickin, and ALEXANDER H
Montoye. 2016. Validity of consumer-based physical activity monitors for specific
activity types. Medicine and science in sports and exercise 48, 8 (2016), 1619–1628.

[26] Zhiqiang Ni, Tongde Wu, Tao Wang, Fangmin Sun, and Ye Li. 2022. Deep multi-
branch two-stage regression network for accurate energy expenditure estimation
with ECG and IMU data. IEEE Transactions on Biomedical Engineering 69, 10
(2022), 3224–3233.

[27] R Passmore and Jm VGA Durnin. 1955. Human energy expenditure. Physiological
reviews 35, 4 (1955), 801–840.

[28] Lilian Roos, Wolfgang Taube, Nadja Beeler, and Thomas Wyss. 2017. Validity
of sports watches when estimating energy expenditure during running. BMC
Sports Science, Medicine and Rehabilitation 9, 1 (2017), 22.

[29] Patrick Slade, Mykel J Kochenderfer, Scott L Delp, and Steven H Collins. 2021.
Sensing leg movement enhances wearable monitoring of energy expenditure.
Nature Communications 12, 1 (2021), 4312.

[30] Jake Stuchbury-Wass, Yang Liu, Kayla-Jade Butkow, Josh Carter, Qiang Yang,
Mathias Ciliberto, Ezio Preatoni, Dong Ma, and Cecilia Mascolo. 2025. WalkEar:
holistic gait monitoring using earables. In 2025 IEEE International Conference on
Pervasive Computing and Communications (PerCom). IEEE, 99–109.

[31] Jordan Waters, Jake Stuchbury-Wass, Yang Liu, Kayla-Jade Butkow, and Cecilia
Mascolo. 2025. Deep-learning based segmentation of in-ear cardiac sounds. In
2025 47th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC). IEEE, 1–7.

[32] Klaas R Westerterp. 2013. Physical activity and physical activity induced energy
expenditure in humans: measurement, determinants, and effects. Frontiers in
physiology 4 (2013), 90.

[33] Qiang Yang, Yang Liu, Jake Stuchbury-Wass, Kayla-Jade Butkow, Dong Ma, and
Cecilia Mascolo. 2024. BrushBuds: Toothbrushing Tracking Using Earphone IMUs.
In Companion of the 2024 on ACM International Joint Conference on Pervasive and
Ubiquitous Computing. 655–660.

[34] Qiang Yang, Yang Liu, Jake Stuchbury-Wass, Kayla-Jade Butkow, Emeli Panariti,
Dong Ma, and Cecilia Mascolo. 2025. SmarTeeth: Augmenting Manual Tooth-
brushing with In-ear Microphones. In Proceedings of the 2025 CHI Conference on
Human Factors in Computing Systems. 1–19.

[35] Qiang Yang, Yang Liu, Jake Stuchbury-Wass, Mathias Ciliberto, Tobias Röddiger,
Kayla-Jade Butkow, Adam Luke Pullin, Emeli Panariti, Dong Ma, and Cecilia
Mascolo. 2025. HearForce: Force Estimation for Manual Toothbrushing with
Earables. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 9, 4 (2025), 1–22.


