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Abstract

Accurately estimating energy expenditure (EE) is crucial for under-
standing exercise efficiency, managing fitness goals, and monitoring
health conditions. Existing wearable systems either rely primarily
on heart rate and motion sensors, resulting in unsatisfactory accu-
racy, or require bulky setups such as thermal cameras to improve
performance by integrating more physiological information, which
limits real-world applicability. We present EarCalo, an earable-
based system that leverages in-ear audio sensing to estimate EE
during running. The system extracts airflow-induced acoustic vari-
ations within the ear canal and employs a deep neural network
to translate these subtle in-ear sound dynamics into EE estimates.
The key insight is that in-ear acoustic signals can capture multiple
physiological factors such as breathing and cardiovascular activity,
while also reflecting motion-related cues like running intensity.
These rich acoustic cues are closely related to EE and provide a uni-
fied sensing modality for estimation. We evaluated EarCalo on 21
participants running at varying speeds using a mixed-user setting.
EarCalo achieved a mean absolute error (MAE) of 0.67 kcal/min, a
mean absolute percentage error (MAPE) of 11.98%, and a Pearson
correlation of 0.945, which achieves accuracy close to established
physiological standards. This work represents an early step toward
practical and personalized earable-based EE estimation in everyday
settings.
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1 Introduction

Energy expenditure (EE) refers to the amount of energy con-
sumed by the body to maintain essential physiological functions
and perform physical activities [9, 27]. EE generally includes resting
metabolism, the energy required for food digestion, and the energy
spent during voluntary movement or exercise [9]. Among these
components, exercise-related EE is the most dynamic and directly
reflects how the body responds to physical activity [14]. Accurate es-
timation of EE during exercise is crucial for understanding workout
efficiency, managing fitness goals, and assessing health conditions
such as obesity, diabetes, and cardiovascular disease [14, 32].
Existing EE estimation solutions span laboratory-grade meth-
ods to consumer-grade wearables. Direct calorimetry, which mea-
sures heat output, provides gold-standard accuracy but requires
sealed chambers and is unsuitable for real-world exercise [20].
Indirect calorimetry, which estimates EE from oxygen consump-
tion and carbon dioxide production, offers practical reference ac-
curacy but depends on bulky respiratory masks and gas analyz-
ers [1, 20]. Consumer-grade wearables such as accelerometers and
photoplethysmography (PPG) sensors on smartwatches are com-
pact and accessible but often inaccurate. Studies show that such
devices can deviate by more than 40% from true EE values due to
their limited physiological sensing scope and reliance on heuristic
models [2, 4, 10, 13]. Recent advances [2] integrate thermal imaging
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with respiration sensing to improve EE estimation accuracy during

cycling and running. However, these systems still rely on cameras

that are bulky, sensitive to lighting and occlusion, and raise privacy
concerns.

Motivated by the need for accurate yet practical energy expendi-
ture monitoring, we explore earable sensing as a new opportunity
for this task. The ear is a compact and stable location that is al-
ready instrumented in everyday life through earphones, providing
anatural platform for unobtrusive physiological sensing [5, 7, 8, 16—
18, 21, 30, 33]. We present EarCalo, the first earable-based system
that leverages in-ear audio sensing to estimate EE during running.
The system captures airflow-induced acoustic variations inside the
ear canal and uses a deep neural network to map these subtle sound
dynamics to energy expenditure. The key intuition is that in-ear
acoustics inherently encode multiple physiological processes that
are directly linked to EE. Prior studies have demonstrated that in-
ear audio can capture respiratory airflow, cardiovascular pulsation,
and motion-induced vibrations [6, 22, 23, 31, 34, 35]. These signals
respectively reveal oxygen uptake and metabolic rate, reflect blood
flow and oxygen transport, and indicate the mechanical effort ex-
erted by the body [20]. By integrating these complementary factors
through a single, compact modality, EarCalo provides a unified
view of physical exertion for accurate EE estimation.

To evaluate this idea, we collected data from 21 participants
running at different speeds using in-ear microphones synchronized
with indirect calorimetry (VO, Master Analyzer mask [1]) as the
ground truth. We trained a general model across all participants to
capture diverse acoustic and physiological patterns and evaluated
it on unseen data from these participants. Our analysis demon-
strates that EarCalo achieves a MAE of 0.67 kcal/min, a MAPE of
11.98%, and a Pearson correlation of 0.945 with calorimetry-based
EE estimates. A MAPE below 10% is typically considered satisfac-
tory [19, 25, 28], and our results approach this standard. Overall,
this work represents an early step toward enabling practical and
personalized earable-based EE estimation in everyday settings.

In summary, this work makes the following contributions:

e We present EarCalo, the first system to investigate in-ear acous-
tic sensing for estimating energy expenditure during running.
We recognize that in-ear acoustics provide a unified channel
capturing multiple physiological processes closely related to EE.

o We develop a deep learning model that translates subtle ear-canal
acoustic dynamics into accurate energy expenditure estimates
validated against indirect calorimetry.

o We evaluate EarCalo through a 21-participant study using a
mixed-user setting, demonstrating that our system can achieve
accuracy close to established standards while maintaining com-
fort, mobility, and everyday usability.

2 Background

2.1 Energy Expenditure

Energy expenditure (EE) quantifies the amount of energy the body
uses to sustain life and perform physical activity. It reflects an
individual’s overall metabolic state and is commonly represented as
the total energy expenditure (TEE) [9]. TEE comprises several
physiological components:
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Figure 2: Spectrograms of in-ear audio.

e Resting Energy Expenditure (REE): the baseline energy re-
quired to maintain vital physiological functions such as circula-
tion, respiration, and cellular metabolism.

e Diet-Induced Energy Expenditure (DEE): the energy con-
sumed to digest, absorb, and metabolize nutrients.

e Activity-Related Energy Expenditure (AEE): the additional
energy spent on voluntary physical activity, varying widely de-
pending on activity type, intensity, and duration.

During exercise, total energy expenditure increases substantially
as the body’s metabolic demand rises to supply oxygen and nutri-
ents to active muscles and to maintain thermoregulation. Reliable
TEE estimation under exercise provides a direct measure of phys-
ical workload and metabolic efficiency [14, 32]. It enables users to
understand how their bodies respond to different exercise inten-
sities, manage calorie balance, and design personalized training
programs. Beyond personal fitness, it supports clinical assessment
of metabolic health, rehabilitation progress, and cardiovascular
function [14, 32]. At a broader scale, large-scale and continuous EE
tracking can inform studies on population health, lifestyle behavior,
and the prevention of metabolic diseases.

2.2 Energy Expenditure from the Ear

The ear presents an ideal sensing location for monitoring EE due
to the following reasons.

Physiological accessibility. The ear is anatomically close to
key physiological pathways, including the carotid artery and upper
airway, enabling access to rich biosignals such as heart rate, heart-
beat output, and respiration [6, 15, 22, 23, 31]. In-ear microphones
benefit from the occlusion effect, allowing the detection of subtle
acoustic variations caused by airflow and vascular pulsations [6, 31].
These signals are directly linked to oxygen intake, cardiac output,
and metabolic rate.

Motion sensing. In-ear microphones can also capture motion-
related cues during exercise as body vibrations propagate through
the ear canal via bone conduction [12, 22-24]. These acoustic vari-
ations reflect physical activity intensity.

We validated these observations as shown in Figure 2. The left
figure shows in-ear spectrograms when the user is stationary with
moderate breathing. Distinct frequency patterns corresponding
to breathing cycles and heartbeat pulses confirm that in-ear mi-
crophones capture both respiratory and cardiovascular activities.
When the user begins running (right), rhythmic footstep patterns
dominate, indicating that the in-ear signal also reflects motion
intensity.

Relevance to energy expenditure. Energy expenditure is
driven by multiple physiological and behavioral processes, includ-
ing respiration rate, cardiovascular effort, and body motion [20].
The ear uniquely provides access to all three, allowing a single
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Figure 3: EarCalo architecture.

sensing location to capture multimodal cues that reflect the body’s
overall exertion level.

By leveraging in-ear audio sensing, EarCalo unifies respiration,
cardiovascular, and motion information within a compact and prac-
tical wearable form factor, namely earbuds that are already widely
adopted and provide a natural, unobtrusive sensing platform for
EE estimation.

3 System Design
3.1 Overview

EarCalo estimates energy expenditure (EE) from in-ear acoustic
signals through the pipeline shown in Figure 3. The system takes
synchronized left- and right-channel in-ear audio as input and pro-
duces an EE estimate as output. Each audio segment is first prepro-
cessed to emphasize relevant physiological and motion information,
then encoded into high-level acoustic embeddings through an audio
encoder. These embeddings capture respiratory and cardiovascu-
lar modulations as well as motion-induced vibrations associated
with running intensity. A convolutional neural network (CNN) and
multilayer perceptron (MLP) jointly serve as the predictor, trans-
forming the embeddings into an EE value representing the caloric
expenditure rate (kcal/min).

3.2 Preprocessing

Raw in-ear audio is segmented into fixed-length windows (12s)
without overlap. Each segment is transformed into a compact time-
frequency representation as follows:

e Log-Mel spectrogram extraction: We compute log-Mel spec-
trograms with 64 Mel bins spanning 50 Hz-8 kHz using a 1024-
point window and a 320-point hop size. This configuration ef-
fectively preserves the fine-grained physiological and motion
variations encoded in in-ear acoustics: frequencies near 50 Hz
correspond to cardiac pulsations [6], the 50-150 Hz band reflects
footstep and body-vibration components [22], and higher fre-
quencies capture airflow turbulence and harmonic structures of
respiration.

e Channel pairing: Spectrograms from the left and right in-ear
microphones are temporally aligned and stacked to form a syn-
chronized two-channel input tensor.

This preprocessing preserves fine-grained acoustic variations as-

sociated with respiration, cardiovascular pulsations, and motion-

induced vibrations, providing rich multimodal cues for downstream

EE estimation.

3.3 Audio Encoder

To obtain robust and transferable representations from limited
labeled data, EarCalo fine-tunes a Contrastive Language-Audio
Pretraining (CLAP) encoder [11] pretrained on large-scale sound
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datasets. CLAP converts each time-frequency input into a 1024-
dimensional embedding, capturing temporal and spectral cues of the
in-ear audio. Separate embeddings are extracted from the left and
right channels and concatenated into a 2 X 1024 matrix representing
both ear-specific and shared acoustic dynamics.

During fine-tuning, the encoder is adapted to the in-ear acoustic
domain and optimized to align its feature representations with
the patterns underlying energy expenditure. This process adjusts
the pretrained feature space to emphasize acoustic variations that
correlate with physical exertion level, enabling EarCalo to generate
representations that are discriminative for EE estimation while
preserving the generalization benefits of large-scale pretraining.

3.4 Energy Expenditure Predictor

The concatenated embeddings are passed through a lightweight

CNN followed by MLP layers to estimate EE:

e Convolutional fusion: The first 2D convolution uses a kernel
size of (2, 3), spanning both ear channels and three neighboring
embedding dimensions. This operation performs early channel
fusion while learning local feature correlations that reflect subtle
differences in spectral and physiological characteristics encoded
by the embeddings.

e Hierarchical encoding: A subsequent convolution with kernel
size (1,3) further abstracts local dependencies along the embed-
ding dimension while preserving the fused channel representa-
tion. Each convolutional layer is followed by ReLU activation,
batch normalization, and max pooling to enhance stability and
generalization.

e Regression head: The resulting feature map is flattened and
passed through a compact multilayer perceptron with one hidden
layer and dropout regularization, projecting the learned represen-
tation into a single scalar output corresponding to EE (kcal/min).
The model is trained end-to-end using mean squared error (MSE)

loss between the predicted EE E; and the ground-truth calorimetry

value E;:

N
_ 1 B2
Lvse = N ;(Ez Ey)”, (1

where N is the number of training samples. This objective encour-
ages accurate per-window EE estimation while allowing the convo-
lutional stack to learn stable inter-channel and and feature-space
relationships in the embeddings.

4 Evaluation
4.1 User Study

To evaluate EarCalo, we conducted a controlled treadmill study with
21 healthy participants. The in-ear microphones were synchronized
with a VO, Master Analyzer mask [1], which served as the ground
truth (GT) device. All procedures were approved by the institutional
ethics committee, and informed consent was obtained from all
participants.

Custom Earbuds. As commercial Active Noise Cancellation
(ANC) earphones do not provide access to raw in-ear microphone
data, we developed a custom hardware prototype for data collection.
Figure 4 (top left) shows the device, which consists of a pair of
earphones embedded with miniature in-ear microphones (Knowles
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Figure 4: Experimental setup. Participants wore custom ear-
phones with in-ear microphones and a VO, Master mask for
reference EE measurement while running on a treadmill.

SPU1410LR5H-QB) facing the ear canal to capture acoustic signals.
The microphones were connected to a Raspberry Pi 4 equipped
with a custom PCB and audio codec board, housed in a lightweight
chest pouch for portability. Audio was sampled at 44.1 kHz.

Ground Truth (GT) Device. For ground truth, we used the VO,
Master Analyzer mask [1] (Figure 4, bottom left), a mobile indirect
calorimetry device that estimates oxygen uptake and carbon dioxide
output, enabling real-time EE calculation (kcal/min). The mask was
calibrated before each session using a 3 L reference syringe. Syn-
chronization between the earphones and GT data was performed
manually by aligning the timestamps of distinct deep-breathing
events recorded before running.

Procedure. Each recording session lasted approximately 10 min-
utes of treadmill running (Figure 4, right). Participants ran at two
self-selected speeds: a comfortable pace (light jog) and a faster
pace (moderate to high exertion), each for 5 minutes. This design
induced varying EE levels. No specific breathing rhythm or run-
ning style was imposed, ensuring that the dataset captured natural,
unconstrained physiological behavior.

Participants. We recruited 21 participants, including 9 female
and 12 male, aged 23-53 years (mean=29.0, SD=6.9), with body
mass indices (BMI) ranging from 18.0 to 30.8 kg/m?. Several partici-
pants were regular runners, while others had limited exercise habits,
providing a diverse range of aerobic fitness levels and metabolic
responses. The running speeds ranged from 3 km/h to 12 km/h
(mean=6.35, SD=1.82), covering light to vigorous running condi-
tions. In total, we collected near 210 minutes of synchronized in-ear
audio and ground-truth EE data. The calorimetry-derived EE values
ranged from 0.67 to 17.6 kcal/min across participants and conditions,
reflecting different running intensities. The diversity in individual
physiology and exercise levels provides a comprehensive dataset
for training and evaluating EarCalo.

4.2 Implementation

We trained and evaluated EarCalo under a mixed-user setting,
where audio segments from all participants were pooled together
and randomly divided into 80% for training and 20% for testing.
This setting allows the model to learn general acoustic-EE patterns
across users while still evaluating on unseen segments to assess gen-
eralization. Each audio segment was labeled with its corresponding
energy expenditure value obtained from the ground truth device.
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Figure 5: Performance of EarCalo on unseen test segments
under mixed-user evaluation setting.

In practice, a user could obtain several minutes of personalized
calibration data (e.g., through a brief supervised session in a clinic
or gym equipped with a calorimetry reference device) to fine-tune
the model for individual physiology. This adaptation would enable
more accurate long-term EE estimation tailored to each user.

All models were implemented in PyTorch using the 2023 version
of CLAP [11] as the pretrained audio encoder. The network was
optimized using Adam with a learning rate of 1 x 1073, batch size
of 32, and dropout ratio of 0.1.

4.3 Performance

Evaluation Metrics. We evaluated EarCalo using three standard
regression metrics that quantify estimation accuracy and consis-
tency with the ground-truth EE values:

e Mean Absolute Error (MAE): the average absolute difference be-
tween predicted and reference EE values (kcal/min).

e Mean Absolute Percentage Error (MAPE): the average absolute
error divided by the ground truth (%).

e Pearson Correlation Coefficient (r): the linear correlation between
predicted and reference EE, where r = 1 indicates perfect agree-
ment.

Overall Performance. Figure 5 shows the overall performance
of EarCalo. The system achieves a MAE of 0.67 kcal/min and a
MAPE of 11.98% when evaluated on unseen test segments under
mixed-user evaluation setting. Prior studies [19, 25, 28] consider
a MAPE below 10% to be satisfactory for energy expenditure es-
timation, and our results are close to this level of accuracy. The
scatter plot illustrates the relationship between predicted and ref-
erence EE values, revealing a strong linear trend with a Pearson
correlation coefficient of r = 0.945. The estimates closely follow
the ground truth across the full EE range, with only a few isolated
outliers. Furthermore, the errors are evenly distributed around the
identity line, suggesting that the model does not exhibit systematic
overestimation or underestimation tendencies.

5 Discussion and Future Work

Model and representation design. EarCalo shows that in-ear
acoustics contain rich information reflecting respiration, heartbeat,
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and motion dynamics, all of which are closely related to energy
expenditure. However, the current model processes these compo-
nents together without explicitly distinguishing their physiological
origins. Future work will investigate architectures that can separate
and integrate these complementary sources more effectively. For
instance, multi-branch or attention-based models could individu-
ally encode respiratory, cardiovascular, and motion-related features
and then combine them through a learned fusion module. This
design would allow the network to emphasize the relative contri-
bution of each physiological factor, leading to more interpretable
and accurate estimation.

Activity scope. The current evaluation focuses on treadmill
running, which provides controlled conditions with stable environ-
ments and consistent motion. Real-world exercise, however, spans
a wider range of activities and movement contexts. Extending the
study to other exercise types such as walking, cycling, stair climb-
ing, high-intensity interval training, and weight training will help
assess how in-ear acoustics reflect energy expenditure across differ-
ent intensities and exercise forms. This will also test the robustness
of EarCalo under outdoor variability (e.g., posture changes, ambi-
ent noise, and diverse individual exercise styles). Our future work
will extend the design and evaluation to outdoor settings and a
broader activity set, and report performance across intensities to
characterize failure modes and generality.

Participant Diversity and Generalization. Our study included
21 healthy adults covering a wide range of ages (23 to 53 years),
BMI (18.0 to 30.8 kg/m?), and fitness levels (both regular runners
and non-runners). In the current implementation, we trained and
evaluated EarCalo using a mixed-user setting, where audio seg-
ments from all participants were pooled and randomly divided
into training and testing sets. This configuration mainly evaluates
the model’s overall predictive capability rather than its ability to
generalize to unseen individuals.

Physiological responses to exercise and the resulting acoustic
signatures can vary considerably across people, particularly among
older adults or those with respiratory or cardiovascular conditions.
To gain an initial understanding of cross-user generalization, we
conducted a preliminary leave-one-subject-out (LOSO) evaluation,
which yielded a MAE of 1.59 kcal/min and a MAPE of 25.57%. These
results show that while the mixed-user model captures general pat-
terns effectively, its performance decreases when applied to unseen
users, reflecting the challenge of inter-individual variability. Future
work will involve recruiting a larger and more diverse participant
cohort to further study this variability and explore methods that
balance generalization and personalization. Incorporating user de-
mographic attributes such as age, sex, or BMI into the model may
also help explain physiological differences and improve generaliza-
tion across users. In addition, domain adaptation and meta-learning
techniques may enhance cross-user robustness, while lightweight
user-specific calibration using a few minutes of labeled data could
further refine individual performance.

Robustness in in-the-wild conditions. In-the-wild operation in-
troduces additional confounders for in-ear audio sensing, including
environmental noise (e.g., wind/traffic), earbud fit variation due to
sweat and motion, and concurrent audio playback. Although the
occluded ear canal provides partial isolation from ambient sound,
fit changes and playback leakage can still distort physiological cues.
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Our future work will explicitly stress-test these factors and improve
robustness via (i) noise/playback-aware augmentation and training,
and (ii) signal-quality estimation to detect poor-fit/noisy segments.
Systems considerations on COTS earables. Practical deploy-
ment on commodity earbuds requires an end-to-end systems de-
sign that balances accuracy with latency, energy, memory, and
communication overhead. We plan to profile the full pipeline un-
der two representative implementations: on-earbud inference and
earbud-to-phone offloading. This includes quantifying the trade-
off between streaming raw audio versus transmitting compact fea-
tures/embeddings, and measuring the corresponding energy/latency
costs. We will also move toward a fully wireless prototype to capture
realistic communication overhead and evaluate adaptive policies
(e.g., activity- and quality-aware sampling/compute) that reduce
battery impact while maintaining accuracy.

6 Related Work

Laboratory-grade Methods. Accurate measurement of energy
expenditure (EE) traditionally relies on calorimetry-based methods.
Direct calorimetry measures the body’s heat output within a sealed
chamber, providing gold-standard precision but being impractical
for everyday use [20]. Indirect calorimetry, which estimates EE
based on oxygen consumption and carbon dioxide production, pro-
vides reliable reference accuracy but requires bulky equipment such
as respiratory masks and gas analyzers [1, 20]. These systems are
therefore restricted to laboratory or clinical environments rather
than real-world exercise scenarios.

Consumer-grade Wearables. Modern wearables such as Apple
Watch and Fitbit, as well as existing research prototypes, typically
estimate EE using accelerometers and PPG sensors [2]. While light-
weight and accessible, these methods rely on activity-dependent
or heuristic models and often exhibit high inter-device variability
and limited accuracy [2, 4, 10, 13]. Multisensor approaches, such as
combining an Inertial Measurement Unit (IMU) with ECG [26] or
deploying multiple IMUs on different body parts [29], can improve
accuracy but usually require several electrodes or sensors, reducing
comfort and everyday usability. Other studies have explored laser-
and camera-based sensing of chest motion [3], but these systems
remain sensitive to body movement. Recent work such as Joules-
Eye [2] leverages wearable thermal imagery to capture respiration
for EE estimation during running and cycling, demonstrating that
integrating richer physiological cues can improve performance.
However, such systems still require users to keep the camera facing
the face, which increases effort and raises usability and privacy
concerns in daily exercise contexts.

EarCalo explores a new sensing locus and modality using in-
ear acoustics captured by earbuds. It naturally fits mobile exercise
scenarios where users already wear earphones, and the ear canal
provides a compact, privacy-preserving site that simultaneously
captures respiration, cardiovascular pulsations, and motion-induced
vibrations, enabling unified inference from a single, everyday form
factor.

7 Conclusion

This paper presents an early exploration into a practical and reliable
wearable-based approach for estimating energy expenditure during
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exercise. We introduced EarCalo, an earable-based system that esti-
mates energy expenditure during running by leveraging airflow-
and vibration-induced acoustic variations inside the ear canal. To
our knowledge, this is the first work to demonstrate that earphones
can support accurate energy expenditure estimation. The system
offers a compact and natural form factor that integrates respiratory,
cardiovascular, and motion information for metabolic estimation.
Our 21-participant study shows that EarCalo achieves a MAPE of
11.98%, which achieves accuracy close to established physiological
standards. These findings highlight the potential of earable devices
as a physiologically grounded and unobtrusive platform for practi-
cal energy expenditure monitoring. Future work will explore more
expressive model architectures, a wider range of exercise scenarios,
and adaptive methods for addressing inter-user variability.
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