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Respiration volume, i.e., the amount of air inhaled/exhaled during breathing, is a critical measure for health and fitness in daily

life, such as helping optimize sports performance, tracking wellness, and early anomaly detection. Current continuous respira-

tion volume monitoring solutions either require specialized and cumbersome instrumentation setup (e.g., RF transceivers), or

rely on customized and non-portable wearables (e.g., masks and chest straps), limiting their usage scenarios. In this paper, we

introduce EarMeter, the first continuous respiration volume monitoring system that utilizes in-ear microphones on earbuds to

seamlessly track respiration volume across varying breathing intensities, making the measurement more accessible in diverse

scenarios. The underlying idea is that breathing sounds, which correlate with breathing volume, can propagate through

the body to the ear canals, where they are captured by in-ear microphones. To achieve this, we propose a deep-learning

approach to address four unique challenges: limited labeled data, faint breathing sounds, interference from footsteps, and

generalization to unseen users. Our approach features fine-tuning an audio encoder pretrained on a broad range of audio

datasets, knowledge transfer from high-quality nose audio, performance boosting with breathing-heartbeat coupling, and

alignment of both earphone channels with normalization. Extensive experiments under the Leave-One-Subject-Out (LOSO)

setting across varying breathing intensities demonstrate the effectiveness of EarMeter, with an average Mean Absolute

Percentage Error (MAPE) of 18.19%, meeting the clinically required standard of 20%.
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1 Introduction

The assessment of respiratory function plays a crucial role in the understanding of respiratory conditions and
the fitness level of the human body [27, 56, 73]. Recent studies have primarily focused on respiratory rate
monitoring [25, 44, 51, 67, 76], which is useful but not fully indicative of lung conditions, as it does not provide
information about the air exchanged in the lungs. Respiration volume, the amount of air inhaled and exhaled
during respiration, is an important biomarker describing an individual’s ventilatory status, providing valuable
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Fig. 1. EarMeter utilizes in-ear microphones on earphones to capture both breathing sounds and heartbeat sounds, enabling

reliable continuous breathing volume estimation across varying breathing intensities.

insights into a person’s overall health, well-being, and everyday lifestyle [48]. In fitness and sports science,
understanding respiration volume helps optimize performance and monitor the recovery process [52]. Regularly
measuring respiration volume provides a picture of general health as you age [7], and significantly lower values
can act as a warning for underlying problems that warrant further attention from healthcare providers [9].
Breathing volume also reflects our mental states in everyday life, including fatigue and even stress or anxiety
levels [71]. As such, a portable solution for continuously monitoring breathing volume in daily life is

important to improve public health and wellness.
Recent works [67, 74] focus on spirometry tests that estimate lung capacity through one-time respiration

volume estimation, where users are required to take a deep breath and then exhale as forcefully and completely as
possible. On the contrary, continuous respiration volume monitoring—which captures natural, ongoing breathing
patterns to continuously track lung function and detect subtle health changes—is highly desirable. However, it
faces several practical barriers. Current gold-standard methods for continuous respiration volume monitoring,
such as plethysmography [20], are primarily employed in clinical settings. These methods require individuals to
visit a hospital or clinic, where measurements are conducted under the supervision of medical professionals using
bulky equipment costing thousands to tens of thousands of USD. In recent years, wearable devices for continuous
respiration volume monitoring have started to be investigated, including sensors embedded in fitting garments
or elastic bands [8, 39, 59, 64] or facial masks [4, 83]. However, these methods are cumbersome, uncomfortable,
and socially unacceptable for everyday use.

Earphones are increasingly popular and are often worn during exercise, work, and leisure activities [68, 69, 72,
77]. Recently, their on-board sensors have enabled a preliminary study [61] on continuous breathing volume
estimation. In [61], photoplethysmography (PPG) in earphones was used to estimate respiration volume, but the
method was limited to a constrained scenario where users remained still and their respiration rate was within a
fixed range. In addition, this approach resulted in a high MAPE of nearly 40%. To the best of our knowledge, there
currently exists no low-cost, non-intrusive, portable, and accurate solution for continuous breathing

volume estimation in daily life.
In this paper, we introduce EarMeter, a novel respiration volume monitoring system that enables continuous

monitoring using in-ear microphones on earphones, seamlessly across varying breathing intensities and daily
activities. In-ear microphones, commonly found in earphones with active noise cancellation (ANC), make
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continuous respiration volume tracking more accessible, scalable, and practically possible. As depicted in Figure 1,
breathing sounds are generated by airflow turbulence in the respiratory system during inhalation and exhalation,
which correlates with the volume of respiration. These sounds then travel through bones and tissues to the
ear canal, where they are captured by the in-ear microphones and used by EarMeter for respiration volume
monitoring. In this work, we focus on estimating respiration volume in healthy individuals under daily living
conditions, providing a foundation for future studies in broader populations. Developing EarMeter involves
several challenges:

(1) The latent mapping between in-ear breathing signals and respiration volume is complex and inherently
non-linear. However, the limited paired in-ear audio and respiration volume make it challenging to model
this relationship. To address this issue, we tune an audio encoder pretrained on a broad range of sounds with
a small amount of our task-specific data, allowing it to learn robust audio representations.

(2) The breathing sounds captured in the ear canal become extremely weak when the user is at rest (with natural,
low-intensity breathing rhythms). To address this issue, we observed that the energy of heartbeat sounds
captured by in-ear microphones remains consistent in such cases. Inspired by the coupling relationship
between the cardiovascular and respiratory systems (as detailed in Section 4.4) [80], we explicitly extract
both heart and breathing features from the in-ear audio and exploit this phenomenon to enhance respiration
volume estimation.

(3) In-ear breathing sounds are easily overpowered by other bone-conducted noises, such as footsteps when the
user is moving. Naively tuning a pretrained encoder using data containing such interference would likely
yield a model capturing the characteristics of high-energy footstep sounds rather than breathing sounds,
severely degrading performance. On the other hand, excluding data with interference from the training
process would also yield a model that cannot reliably estimate breathing volume during movement. To tackle
this challenge, we propose a novel knowledge transfer framework that utilizes high-quality nasal audio to
guide the model in learning effective breathing features from the in-ear audio, even with interference.

(4) Given the inter-individual variability in physiological characteristics, body types, and signal patterns, gener-
alizing to unseen users often requires fine-tuning with user-specific data to achieve satisfactory accuracy.
However, this process typically depends on access to clinical facilities and specialized ground-truth de-
vices, which can be bulky, expensive and may limit practical usage. Moreover, intra-individual variability
also exists due varying placements of earbud on each ear. To address these concerns, we 1) introduce a
feature alignment framework we call “earphone channel alignment” that pushes features extracted from
both earphone channels into the same learned embedding to reduce intra-user variability resulting from
earbud placements, and 2) incorporate a normalization component to mitigate inter-user variability. Our
experiments show that EarMeter achieves an average MAPE below 20%, aligning with clinical standards.
Incorporating these techniques nearly doubles the number of new users under this threshold compared to
without them, providing promising evidence that a generalizable model that requires little to no fine-tuning
with medical-grade devices is feasible.

To evaluate the performance of EarMeter, we developed an earable prototype and conducted experiments with
22 healthy participants across varying breathing intensities under both stationary and moving scenarios. EarMeter
achieves an average Mean Absolute Error (MAE) of 0.20 liters (𝐿), MAPE of 18.19%, and Pearson Correlation
of 0.89 in a leave-one-subject-out (LOSO) validation, which meets the clinical standard of a MAPE of less than
20% [65]. We also evaluate EarMeter’s performance on the other two biomarkers of the respiration volume at
different scales, showing the importance of the approach and its wide applicability.
In summary, this paper makes the following contributions:

• We introduce EarMeter, the first earable-based system for continuous respiration volume monitoring that
utilizes in-ear audio across varying breathing intensities. Unlike existing works that are constrained to limited
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settings, EarMeter enables continuous respiration volume monitoring across a wide range of scenarios in daily
life that was previously not possible.

• We propose a novel deep learning approach to tackle four key challenges in EarMeter: limited labeled data,
faint breathing sounds, interference from footstep noise, and generalization to unseen users. Our framework
introduces (i) a knowledge transfer strategy that leverages representations learned from a small amount of
high-quality audio collected under the nose, (ii) an exploitation of the coupling between cardiovascular and
respiratory systems to improve respiration volume estimation, and (iii) an earphone channel alignment with
normalization method to mitigate inter- and intra-user variability.

• We develop an EarMeter prototype and conduct extensive benchmarks involving 22 subjects across varying
breathing intensities. The results demonstrate that EarMeter can achieve a MAPE of 18.19%, which surpasses
the clinical standard of a MAPE of 20% or less, even under motion and in daily living conditions. Deploying
EarMeter on a mobile phone also demonstrates real-time performance with low energy consumption.

2 Related Works

2.1 One-time Spirometry Test

Existing studies [67, 74] have explored respiration volume estimation during spirometry tests for monitoring
human lung function. These tests measure various volumes, including forced expiratory volume in one second
(FEV1), forced vital capacity (FVC), and forced inspiratory vital capacity (FIVC). SpiroSonic [67] utilizes commodity
smartphones to track chest wall motion through acoustic sensing during spirometry tests. Similarly, Earspiro [74]
uses earphone microphones to estimate the flow-volume (FV) curve by analyzing airflow sounds recorded
during these tests to estimate FEV1, FVC, and FIVC. A recent study [15] explored a similar concept but allowed
participants to perform submaximal, rather than maximal, breathing maneuvers. However, spirometry tests
require users to take a deep breath or exhale as forcefully and completely as possible, which makes them
unsuitable for continuous, natural respiration volume monitoring [5, 67, 74]. Our approach diverges by focusing
on continuous breathing volume estimation that captures the user’s normal, everyday breathing patterns, as
opposed to the one-time or (sub)maximal breathing volumes measured during traditional spirometry tests.

2.2 Continuous Respiration Volume Monitoring

2.2.1 Contact-free approaches: Contact-free systems utilizing RF signals [50, 51, 82] or cameras [51, 75] have been
investigated for continuous respiration volume monitoring. DeepBreath [75] focuses on lung volume estimation
during belly breathing for breathing exercise assessment. In their approach, the user is required to ensure that
the hand on the belly exhibits regular upward and downward movements synchronized with the breathing cycle,
while the hand on the chest remains relatively still. A forward-facing camera is used to capture these motions,
allowing DeepBreath to estimate lung volume during a one-time exercise session with participant cooperation.
In contrast, our system, EarMeter, is designed to continuously estimate breathing volume in natural settings
without requiring user effort. WiKiSpiro [50] and WiSpiro [51] present a hybrid radio-camera system and a
directional radio system, respectively, for estimating respiration volume during sleep. MoRe-Fi [82] introduces a
motion-robust respiration monitoring system for waveform recovery. They use the amplitude of the recovered
waveform to represent respiration volume, based on their proportional relationship. However, this method cannot
provide absolute volume measurements, i.e., the exact number in liters. Additionally, these systems require
extensive room instrumentation and setup, and their operational range is limited. In contrast, EarMeter offers a
portable solution for absolute respiration volume monitoring using earphones, making it more accessible for
everyday use and suitable for use beyond just resting scenarios.

2.2.2 Wearable-based approaches: Respiration volume has been explored usingwearable devices as well; however,
existing solutions typically rely on obtrusive sensors on the body, such as chest/upper-arm straps [8, 22, 39, 40,
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64, 66], fitted garments [10, 14, 31], masks [4, 83], or direct attachment of multiple sensors to the skin [18, 19, 47].
These approaches can be uncomfortable and cumbersome, which significantly limits their acceptance for everyday
use. A preliminary study presented at a workshop, OptiBreathe [61], explores estimating respiratory volume
using PPG sensors in earphones. However, this approach was tested under constrained conditions—limited to a
breathing rate of 10-20 bpm and stationary users, and their simple algorithm results in a substantial error (MAPE)
of nearly 40%. Furthermore, while microphones are commonly integrated into earphones [12, 35, 36, 78], PPG
sensors would need to be specifically added for monitoring purposes and are not yet a standard feature in most
commercial earables. In contrast, EarMeter is the first continuous respiration volume monitoring system that
utilizes earphone microphones to deliver promising performance across a range of breathing intensities.

3 Background and Challenges

3.1 Respiration Volume

Respiration volume, or the average amount of air inhaled or exhaled per breath during natural breathing, computed

over a specific period, is a key indicator for assessing several dimensions of lung function, such as:
• Obstructive breathing patterns: These involve difficulty in exhaling air due to increased airway resistance,
leading to slower respiration volume. They are important in sports science, where respiratory efficiency can
influence athletic performance [53] and may reflect exercise-induced bronchoconstriction (EIB) experienced by
endurance athletes [28].

• Restrictive breathing patterns: These occur when lung expansion is limited, hindering airflow and reducing
respiration volume. They are observed in everyday situations such as shallow breathing during stress or anxiety,
and in sleep-related conditions that affect breathing rhythms [54, 71].

• Effective ventilation: Essential for eliminating carbon dioxide (CO2) and absorbing oxygen (O2), effective
ventilation is crucial during physical activities where CO2 production increases and more O2 is needed. In
the general population, respiration volume increases naturally to meet these demands, making it a valuable
indicator for monitoring physical exertion, cardiorespiratory fitness, and recovery [11].

• Gas exchange efficiency: When ventilation is insufficient, it can lead to elevated CO2 levels (hypercapnia) or
low oxygen availability (hypoxia) [21]. Tracking respiration volume continuously can provide insights into
everyday scenarios such as fatigue, the influence of certain medications, or the impact of lifestyle factors like
obesity on breathing patterns [63, 70].

3.2 Breathing Sounds and Respiration Volume

Breathing sounds are produced by the airflow in the respiratory system during inhalation and exhalation. When
air flows through the respiratory tract, it encounters resistance, leading to turbulence within the trachea and
large airways (bronchi) [49]. This turbulence causes breathing sounds. The characteristics of these sounds can
vary based on the respiratory cycle, the lung capacity, the velocity of the airflow, and the physical condition of
the respiratory pathways [49]. The relationship between respiration volume 𝑉 and the spectral power 𝐸 of the
breathing sounds 𝑥 (𝑡) has been studied and is often modeled using a power-law equation [26, 60, 79]:

𝑉 =𝐶1 × 𝑙𝑜𝑔(𝐸) +𝐶2

𝐸 =
∫
𝑋 (𝜔)𝑑𝜔

(1)

where 𝐶1 and 𝐶2 are the model coefficients related to individual physiological factors. 𝑋 (𝜔) is the Fourier
transform of 𝑥 (𝑡) in the frequency domain.
As shown in Figure 1, the generated breathing sound propagates through the thoracic cavity, surrounding

bones and tissues, and eventually reaches the ear canals, where it can be captured by in-ear microphones [45].
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Fig. 2. An illustration of in-ear physiological sounds across different breathing intensities.

We can model the propagation of in-ear breathing sounds as follows:

𝑦 (𝑡) = 𝑥 (𝑡) ∗ ℎ(𝑡) + 𝑛(𝑡) (2)

where 𝑦 (𝑡) is the double-channel breathing sounds captured in the ear canal at time 𝑡 , ℎ(𝑡) is the propagation
channel and from the lung to the ear canal, and 𝑛(𝑡) represents noise. ∗ is the convolution operation. Figure 2a
illustrates the spectrogram of in-ear physiological sounds, and we can clearly observe the breathing sound.
Substituting Equation 1 into Equation 2, we can obtain the model from the in-ear breathing sounds to the
respiration volume:

𝑉 =𝐶1 × log(

∫
𝑌 (𝜔) − 𝑁 (𝜔)

𝐻 (𝜔)
𝑑𝜔) +𝐶2 (3)

3.3 Challenges and Opportunities

Directly deriving respiration volume from in-ear sounds alone remains challenging due to the non-linear dis-
tortions caused by the complex interaction of physiological factors and sound propagation through the body
that are difficult to model in Equation 3. To address this, we leverage deep learning to approximate the intricate

relationship between the spectral features of in-ear breathing sounds and respiration volume. However, three major
challenges remain:
1) Limited availability of labeled in-ear audio data. To the best of our knowledge, no existing datasets
provide paired microphone and respiration volume data. Furthermore, collecting a sufficient number of labeled
samples from a diverse participant pool is labor-intensive.
• Fine-tuning an audio encoder. Rather than training models entirely from scratch, we opted to fine-tune an audio

encoder pretrained on a broad range of audio datasets, as discussed in Section 4.2. By leveraging an encoder
that has been pretrained to interpret a wide variety of sounds, we can adapt our architecture to achieve robust
performance with relatively small amounts of task-specific data, as demonstrated in Section 6.3. However,
fine-tuning a pretrained model alone is still insufficient due to the following challenges.

2) In-ear breathing sounds are low in volume. In Figure 2a, we can clearly observe breathing sounds in the
high-frequency band when a user engages in high-intensity breathing. However, when a user is at rest (with
natural, low-intensity breathing rhythms), the breathing sounds become very weak. As shown in Figure 2b, after
significant absorption and attenuation by soft tissues, the breathing sounds reaching ear canals become very
faint, particularly in the high-frequency range (highlighted in the dashed box). This attenuation poses a challenge
for accurate breathing volume estimation. To address this challenge, we leverage the following novel insight to
boost performance:

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 198. Publication date: December 2025.



EarMeter: Continuous Respiration Volume Monitoring with Earables • 198:7

Footsteps

Breathing

(a) In-ear sounds.

Inhalation

Exhalation

(b) Nasal breathing sounds.

Fig. 3. The audio signals captured in the ear canal and under the nose during running.

• Boosting performance with heart sounds. One pattern we observed is that the energy of heartbeat sounds
captured by in-ear microphones are often more prevalent than breathing sounds when a user is at rest, and
generally do not overlap with the breathing sounds, as shown in Figure 2. Past work established physiological
couplings between the respiratory and cardiovascular systems [80], which introduces specific modulations
in heartbeat signals that are closely tied to respiration. In this work, we exploit these couplings to enhance
respiration volume estimation when reliable heartbeat sounds are present in the ear (Section 4.4).

3) In-ear breathing sounds can be easily overpowered. In real-world scenarios, users are often moving
around (e.g., walking or running) and not stationary or standing still. Figure 3a shows the spectrogram of in-ear
audio while a person is running, which clearly overwhelms most of the breathing signal. Directly tuning a
pretrained encoder using data contaminated with such interference would likely yield a model that captures
the characteristics of high-energy footstep sounds, rather than breathing sounds, leading to severely degraded
performance. On the other hand, removing data with interference from the training process would also yield a
model that cannot reliably estimate breathing volume during movement. To address this challenge, we leverage
two novel insights to boost performance under noisy scenarios.
• Learning respiration volume from the nose. The best area on the body to learn breathing volume from sound is
the area with the highest breathing signal-to-noise (SNR) ratio, since this location best captures the feature
(breathing sounds) that we are using to translate to breathing volume.We found that breathing sounds are clearly
audible with a microphone placed just below the nose. As shown in Figure 3b, these nasal breathing sounds are
strong and unaffected by footstep noise, distinctly capturing both inhalation and exhalation patterns. Therefore,
we decide to create a representation that can accurately estimate breathing volume from a microphone placed
under the nose (Section 4.3.1).

• Knowledge transfer from nose to ear. Estimating breathing volume from a microphone under the nose requires
creating a custom wearable that specifically places the microphone at that location. Such a device is not
commonplace, nor is natural to wear. However, the sounds generated through the nose is directly correlated
with the breathing sounds measured in-ear, with the major difference being the channel that the sound
propagates through (e.g., nose: nasal cavity, ear: bone, skin, and tissue). To leverage the representations learned
from the nose, we propose a novel knowledge transfer framework, where the in-ear respiration volume model,
acting as the student network, leverages the nose model, acting as the teacher network, to better learn weights,
representations, and predictors of breathing volume (Section 4.3.2).

4) Inter-individual and Intra-individual variability requires additional calibration. Generalizing respira-
tory volume estimation models to unseen users remains a significant challenge due to the wide inter-individual
variability in physiological characteristics, such as lung capacity, chest wall compliance, and breathing habits.
In addition, variations in ear canal shape, body composition, and sensor placement can further influence the
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Fig. 4. Illustration of the EarMeter pipeline. 𝑓𝑙 and 𝑓𝑟 refer to the intermediate features extracted for the left and right in-ear

microphone channel, respectively.

acoustic and inertial signals captured by earable devices. As a result, models trained on one group of users often
require fine-tuning with user-specific data to maintain satisfactory accuracy on new individuals. However, this
fine-tuning process typically requires access to clinical equipment (e.g., spirometers, metabolic carts, or high-end
masks) for label data collection, which typically require clinical infrastructure and/or trained personnel, making
them hard to access. In addition to variability between users, variations in the placement of the right and left
earbuds also introduce differences in sound occlusion, signal characteristics, and channel intensities even for the
same individual. For example, the degree of occlusion may vary depending on how far an earbud is inserted into
the ear canal and its orientation. To address these limitations, we introduce two key components (Section 4.5).
• Label Normalization. First, we apply global min–max normalization to the respiration volume labels so that all
subjects are mapped to a common scale. This reduces inter-subject variability caused by differences in lung
capacity, stabilizes model training, and prevents the model from being biased toward subjects with naturally
larger volumes.

• Earphone Channel Alignment. Second, to account for intra-user variations caused by differences in earbud
placement between ears, we introduce an alignment scheme that encourages EarMeter to learn consistent
embeddings from the right and left microphone channels for the same breathing event. This helps EarMeter
filter out and compensate for deviations between in-ear microphones within the same user.

4 System Design

4.1 System in a Nutshell

Figure 4 shows the system architecture of EarMeter. EarMeter takes two-channel in-ear audio as input and
forwards it to the preprocessing module (Section 4.2.1). Here, the in-ear audio is filtered into breathing sounds
and heartbeat sounds based on their distinct frequency bands, which will be processed simultaneously in separate
branches. Specifically, the breathing sounds are passed to the Feature Extraction module (Section 4.2.2) to extract
respiration embeddings. To enhance the encoder’s ability to learn effective representations of breathing sounds
across different intensities and noise interference, a teacher encoder using high-quality nasal audio as input
is employed in the Knowledge Transfer module (Section 4.3) to guide the original encoder to capture effective
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breathing embeddings. At the same time, for the heart sounds branch, the Respiratory Modulation module
(Section 4.4) extracts breathing-modulated features from heartbeat sounds. The breathing embeddings and
heartbeat features are subsequently concatenated and fed into a convolutional neural network (CNN) predictor
to estimate the respiration volume. Simultaneously, earphone channel alignment is used to learn more similar
embeddings between the left and right microphone channels and reduce variations from earbud placement, while
output normalization is applied to reduce inter-user label variability (Section 4.5). Once training is completed, the
teacher encoder branch can be removed, and EarMeter only requires in-ear audio as input during inference.

4.2 Backbone Pipeline

The backbone pipeline of EarMeter takes two-channel (left and right) in-ear audio as input and outputs the
estimated respiration volume. This serves as the student model in the knowledge transfer framework, as detailed
in Section 4.3.

4.2.1 Preprocessing. Before passing in-ear audio into any of the breathing volume estimation models or the
respiratory modulation module, we divide audio signals into windows without overlap and process them as
follows. We highpass filter the in-ear audio signals with a 50Hz cutoff, as heartbeat frequencies fall below this
frequency [13, 43]. The components of the signal below 50Hz are used as input to extract heartbeat features
(Section 4.4). We extract log Mel spectrograms on the highpass output, which has been shown to capture the
nuances of breathing sounds better than raw waveform data [58]. We use a window size of 1024 with a hop size
of 320, and 64 Mel bins ranging from 50 to 8 kHz, reshaping the audio window into a 64 × 964 time-frequency
map. For two-channel in-ear audio, which produces two time-frequency maps, these are used as input to the
encoder as shown in Figure 5.

4.2.2 Feature Extraction. Due to the scarcity of labeled data for our task, training a model from scratch often leads
to poor generalization and suboptimal performance. To address this, we instead leverage the CLAP (Contrastive
Language-Audio Pretraining) encoder [24], a powerful audio representation model that has been pretrained on a
broad and diverse audio dataset, including human sounds, environmental noises, acoustic scenes, music, and
sound effects. This extensive pretraining enables the CLAP encoder to learn generalized audio features, which
can be effectively transferred to various downstream tasks.
However, while the CLAP encoder is pretrained on diverse audio datasets provides a strong foundation, it

also introduces domain-specific knowledge that does not fully align with the nuances of respiratory sounds
since it is pretrained on other types of sounds and texts [81]. Therefore, we tune the CLAP encoder on our
breathing-specific data to better adapt the generated embeddings to the task at hand, which refines the model’s
ability to capture the unique characteristics of breathing sounds.
After this step, the CLAP encoder extracts two embedding vectors, each with 1024 dimensions, from each

channel of the in-ear audio. These two vectors are then concatenated into an embedding matrix with a size of 2 ×
1024 as shown in Figure 5.

4.2.3 CNN Predictor. To estimate breathing volume from in-ear audio, we pass the embedding matrix extracted
by the CLAP encoder through two convolutional layers, which are used to efficiently capture relationships
between the two channels. This is followed by a multilayer perceptron (MLP) layer, which projects the latent
features to respiration volume as illustrated in Figure 6.

4.3 Knowledge Transfer

4.3.1 Estimating Breathing Volume from the Nose. As discussed in Section 3.3, breathing sounds from amicrophone
placed under the nose exhibit a high SNR, which we leverage to train an accurate estimator of breathing volume.
This nose audio estimator mimics the network used in the backbone pipeline for in-ear audio but does not share
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weights with it. As shown in Figure 5, to estimate breathing volume from nose audio, we first pass the nose
audio through the Feature Extractor, and then feed its extracted embeddings into the CNN Predictor for breathing
volume estimation. The major difference is that, instead of estimating two embedding vectors corresponding to
two audio channels, the CLAP encoder of the nose audio estimator estimates a single embedding vector for the
microphone placed under the nose.

4.3.2 Knowledge Transfer from Nose to In-ear Audio. Now that we have a model that can accurately estimate
breathing volume from high quality recordings from a microphone under the nose, we transfer knowledge from
this model to help train the student model that predicts breathing volume from much lower SNR in-ear audio data,
that is often overpowered by the sounds of other activities like running or walking. Knowledge transfer, where
a student model is trained to mimic the behavior of a more accurate teacher model, generally allows student
models to generalize well to noisy or complex environments in a related domain [29, 32].
Architecture. Figure 5 illustrates the network architecture of EarMeter. The teacher model is the nose

audio estimator built on a CLAP encoder, which is tuned using clear nasal audio signals that capture strong,
uncontaminated breathing sounds. These nasal audio signals serve as an ideal reference, enabling the teacher
CLAP encoder to focus on the most relevant respiratory features. The student model, based on another CLAP
encoder, is trained on more challenging in-ear audio data, which may include significant interference from
footstep noise and other bone-conducted sounds.

Training and Tuning. To tune the student network, we propose a novel loss function that helps guide learning
across the CLAP encoders and projection layers, maintaining similarity in learned representations across the
projection and encoding layers between the teacher and student models. The loss function is composed of the
following components:
• Mean Squared Error (MSE) Loss for the teacher model. We use the MSE loss function to minimize the difference
between the predicted and ground truth breathing volumes for model training. The MSE loss is defined as:

L𝑡 =
1

𝑁

𝑁∑
𝑖=1

(𝐿𝑖 − 𝐿̂
𝑡
𝑖 )

2 (4)

where 𝐿𝑖 represents the ground truth breathing volume for the i-𝑡ℎ sample, and 𝐿̂𝑡𝑖 is the predicted breathing

volume from the teacher model. This loss measures the difference between the predicted breathing volume 𝐿̂𝑡
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nose Mouth
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Fig. 7. Breathing sounds from nose and mouth captured by nasal microphone. We see clear breathing signatures from both

modes of breathing. This allows EarMeter to incorporate training data and generalize to both modes of breathing.

using nose audio and the actual ground truth values 𝐿. It ensures that the teacher model remains accurate in
predicting respiration volumes from clear nose audio.

• MSE Loss for the student model. Similar to the teacher’s loss, this loss measures the discrepancy between the
student’s predicted breathing volume and the ground truth, pushing the student to make accurate predictions
from the noisier in-ear audio:

L𝑠 =
1

𝑁

𝑁∑
𝑖=1

(𝐿𝑖 − 𝐿̂
𝑠
𝑖 )

2 (5)

where 𝐿̂𝑠𝑖 is the breathing volume predicted by the student model.
• Similarity Loss between Teacher and Student Models. This loss measures the Kullback-Leibler (KL) divergence
[38] between the embeddings generated by the teacher and student models. The KL divergence is used to
measure the difference between two probability distributions. By minimizing this loss, we guide the student
model to produce respiration-related embeddings that are as close as possible to those of the teacher, ensuring
that the knowledge learned from the teacher is effectively transferred to the student:

L𝐾𝐿 =
∑
𝑧

𝑝𝑡 (𝑧) log
𝑝𝑡 (𝑧)

𝑝𝑙𝑠 (𝑧)
+
∑
𝑧

𝑝𝑡 (𝑧) log
𝑝𝑡 (𝑧)

𝑝𝑟𝑠 (𝑧)
(6)

where 𝑧 refers to the embeddings generated by the models. 𝑝𝑙𝑠 (𝑧) and 𝑝
𝑟
𝑠 (𝑧) are the probability distributions of

the embeddings of the left and right in-ear audio channels, respectively. 𝑝𝑡 (𝑧) is the probability distributions of
the embeddings of the nose audio.
The total loss used for network training is a weighted average of these three components:

Lregression = 𝛼L𝑡 + 𝛽L𝑠 + 𝛾L𝐾𝐿 (7)

where 𝛼 , 𝛽 , and 𝛾 are the constant coefficients to balance different losses. The default values of 𝛼 , 𝛽 , and 𝛾 are
empirically set to 1 to achieve equal contributions.

Additionally, we employ an online fine-tuning strategy [41], where the teacher and student models are updated
simultaneously during training. This allows both teacher and student models to be adapted simultaneously as
samples are streamed in during a short data collection session (e.g., at a doctor’s visit). By jointly optimizing these
losses, the student CLAP model learns to accurately extract respiration-related features, even in the presence of
significant interference from footstep noise. This knowledge transfer approach allows our system to maintain
high performance across different breathing intensities in real-world conditions, where clear physiological signals
are often difficult to isolate. After training, the teacher model is discarded, and EarMeter performs inference
using only in-ear audio.
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Fig. 8. Heartbeat feature extraction for respiration volume estimation.

Nose vs. Mouth Breathing. Given that people can breathe through either the nose or mouth, a natural
concern is whether or not our training procedure can adapt to variations in breathing mode. Although we place
the nose microphone between the nostrils and upper lip, it can still capture airflow sounds from both nose and
mouth breathing, as shown in Figure 7. Moreover, during our data collection, we did not restrict users to a specific
breathing mode, which allowed EarMeter to exposed to natural variations of breathing. As such, the performance
of EarMeter under different breathing modes are consistent, as we show in Section 6.2.

4.4 Exploiting Heart Sounds to Boost Performance

4.4.1 Method. To further improve performance, we introduce a heart sound assisted mechanism as an oppor-
tunistic enhancement. In stationary conditions, breathing sounds are often weak, while heart sounds are usually
audible and can provide complementary information. Medical studies have shown that heartbeats are modulated
by the respiratory system [42], which allows heart sound dynamics to indirectly reflect respiratory effort. This
coupling effect between respiration and heartbeat has been utilized in previous work for respiratory volume
estimation [61]. We build on this concept and exploit the interplay between heart sounds and breathing to
improve breathing volume estimation. Specifically, past works [16] have reported three key effects that the
respiratory system induces on heartbeat signals, including pulse amplitude modulation (AM), pulse frequency
modulation (FM), and respiratory-induced intensity variation (RIIV), as illustrated in Figure 8. We provide both
qualitative and quantitative analyses to support the physiological relevance and practical utility of incorporating
heartbeat-derived features to improve respiration volume estimation. The qualitative analysis draws on estab-
lished physiological mechanisms underlying cardiorespiratory coupling, while the quantitative analysis examines
statistical relationships between these features and breathing volume in our dataset.
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Table 1. Quantitative coupling between heartbeat-derived features and breathing volume.

Metric AM FM RIIV

Canonical Correlation (first component) 0.413 0.394 0.436
Mutual Information (bits) 0.062 0.041 0.078
Distance Correlation 0.127 0.119 0.133
PLSR: Variance explained (%) 12.58 10.27 13.47

1) Qualitative Analysis: We begin by reviewing physiological mechanisms that explain how respiration affects
cardiovascular dynamics. These insights provide the foundational rationale for using heartbeat-derived features
in our system.
a) Physiological Rationale Discussion: The physiological rationale behind incorporating AM, FM, and RIIV is
grounded in well-established cardiorespiratory interactions [46] and detailed as follows:

• Respiratory effects on pulse amplitude (AM: pulse amplitude modulation):When we breathe in,
the pressure inside our chest decreases. This affects how much blood the heart pumps out with each beat,
often leading to a temporary drop in blood pressure and the strength of the pulse. As a result, the size of
each heartbeat pulse, known as pulse amplitude, changes across the breathing cycle. Deeper breaths tend
to cause larger changes in this amplitude, which can reflect how hard or deep someone is breathing [17]. In
our system, we capture these changes using in-ear cardiovascular sounds, which reflect subtle pulse-related
vibrations within the ear canal that vary with breathing.

• Respiratory effects on pulse frequency (FM: pulse frequency modulation): Breathing affects heart
rate through autonomic nervous system control. During inspiration, heart rate typically increases; during
expiration, it decreases. This pattern, known as respiratory sinus arrhythmia (RSA), is a common phys-
iological phenomenon observed across various age groups and species [30, 80]. RSA exists as a natural
mechanism to improve the efficiency of gas exchange in the lungs by adjusting blood flow in sync with
breathing. The temporal fluctuation in inter-beat intervals due to RSA can serve as a proxy for respiratory
depth (i.e., breathing volume). In our work, these frequency modulations are extracted from heartbeat
intervals embedded in in-ear cardiovascular audio.

• Respiratory effects on signal baseline (RIIV: respiratory-induced intensity variation): RIIV refers
to slow changes in the baseline level of cardiovascular signals that occur in sync with breathing. These
changes are caused by two main factors: (1) mechanical shifts in chest pressure during breathing, which
temporarily reduce the amount of blood flowing to the outer parts of the body, and (2) the nervous system
adjusting the tightness of blood vessels (vascular tone) in response to each breath. When a person takes
deeper or more controlled breaths, these effects become stronger and cause more noticeable shifts in signal
intensity. RIIV captures these combined effects and serves as an indirect indicator of breathing effort and
depth. In our system, RIIV appears as slow shifts in the in-ear audio caused by respiratory-driven changes
in blood flow and vessel behavior near the ear.

b) Empirical Evidence fromRelated Study: In addition, recent work by Romero et al. [61] provides preliminary
empirical support for the physiological rationale. Their system, OptiBreathe, uses in-ear PPG signals in a stationary
and controlled setting to estimate tidal volume by analyzing respiratory-induced modulations in cardiovascular
signals (including AM, FM, and RIIV). Although this study struggles to provide satisfactory performance (a MAPE
of nearly 40%), it highlights the potential of heartbeat-derived features to capture meaningful information about
breathing volume.
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2) Quantitative Analysis: To further validate the usefulness of heartbeat features in our own dataset, we
conducted a comprehensive quantitative analysis of the coupling between heartbeat-derived features and breathing
volume, using multiple statistical and information-theoretic methods. These analyses assess both linear and
nonlinear relationships between each feature type (i.e., AM, FM, and RIIV) and the ground truth breathing volume.
a) Analysis setup:We analyzed the statistical relationships between the extracted AM, FM, and RIIV feature
sets from input audio windows and the ground-truth breathing volume using data collected under stationary
conditions, where heartbeat sounds were clearly detectable. For each feature type (AM, FM, RIIV), the heartbeat-
derived feature matrix had a shape of 𝑁 ×𝐷 , where 𝑁 is the number of windows and 𝐷 is the number of extracted
features per window. The corresponding ground-truth breathing volume was represented as an 𝑁 × 1 vector.
Canonical correlation analysis (CCA) and Partial Least Squares regression (PLSR) were applied to the full feature
matrices to evaluate multivariate relationships. For mutual information (MI) and distance correlation (dCor), we
first computed a scalar summary statistic (mean) of each feature vector per window to quantify window-level
dependencies with breathing volume. The full results are summarized in Table 1.
b) Interpreting the results: Our analysis demonstrates that all three heartbeat-derived feature types–AM, FM,
and RIIV–exhibit statistically meaningful coupling with breathing volume as discussed below.

We first applied Canonical Correlation Analysis (CCA), which measures the strength of linear association
between two multivariate sets. This reveals moderate correlation values for each feature, with the first canonical
component ranging from 0.394 (FM) to 0.436 (RIIV). This correlation suggests that a shared linear subspace exists
between heartbeat-derived features and breathing volume.

To explore nonlinear dependencies, we computedMutual Information (MI), which captures general statistical
dependence, and Distance Correlation (dCor), which detects both linear and nonlinear associations. MI values
ranged from 0.041 to 0.078 bits, and dCor values ranged from 0.119 to 0.133. While these values are moderate,
they are consistently above zero across all feature types, confirming that each signal dimension contributes
information beyond linear effects.

We also used Partial Least Squares Regression (PLSR), a low-rank predictive modeling technique, to assess
how well these features explain variance in breathing volume. The model explained between 10.27% (FM) and
13.47% (RIIV) of variance—modest yet meaningful results, especially considering the features were derived entirely
from cardiovascular modulations embedded in in-ear audio, without using any direct respiratory signals.
3) Analysis summary. Our qualitative and quantitative analyses demonstrate that AM, FM, and RIIV carry
physiologically meaningful information related to breathing volume. While the strength of coupling is moder-
ate, the consistency across multiple statistical perspectives suggests that these features can serve as valuable
supplementary signals. In our system, we incorporate these heartbeat-derived features alongside primary audio
features into a learning model. Their inclusion helps capture latent cardiorespiratory dynamics and contributes to
improved performance in breathing volume estimation, beyond what is achievable with respiratory audio alone.
4) Implementation details.We extract all three features (RIIV, AM, FM) from the less noisy microphone channel.
To make this determination, we measure the heart rate variability (HRV) from both channels and select the
channel with smaller standard deviation (STD), which we observe less likely to be impacted by noise through our
deployments as lower STD implies more regular heartbeats signals.
Since heart rate varies over time, the number of values extracted for each feature will also vary between

windows. To standardize the input for the model, we fill a 200-dimension feature vector with as many RIIV/AM/FM
values measured within each window and pad the rest. In our deployments, we observed that maximum number
of features extracted from a person is typically less than this amount, so setting the feature dimension to 200
allows us to comfortably capture the time series of every feature in a window.
5) Integrating with breathing volume estimation. To augment our breathing estimation model, we extract
and assemble these features into a feature vector over an estimation window. Next, we combine this feature
vector with the respiratory features extracted from the CLAP encoder and the following CNN predictor, creating
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a comprehensive embedding that incorporates both direct respiratory sounds and indirect respiration-modulated
heartbeat sounds, before using this newly formed embedding to estimate breathing volume. The architecture for
merging these two feature spaces is shown in Figure 6.

0  2.5 5  7.5 10 
Time (s)

-1

0 

1 
A

m
pl

itu
de

Stationary

0  2.5 5  7.5 10 
Time (s)

-1

0 

1 

A
m

pl
itu

de

Running

Fig. 9. Illustration of heartbeat features while standing (top) and running (bottom) from the in-ear microphone. During

motion, heartbeat features are mostly overpowered. As such, we only incorporate heartbeat features when they are clearly

present, which can be determined through a light-weight SVM classifier.

4.4.2 Accounting for Motion: Clean Heartbeat Detector. During high-intensity motion, such as walking or running,
heartbeat sounds captured by in-ear microphones are significantly contaminated by other internal body sounds,
particularly the rhythmic impacts associated with footsteps. Figure 9 shows in-ear audio collected from a user
standing still (Figure 9, top) and running (Figure 9, bottom). While heart signals are discernible in the stationary
condition, they become almost completely obscured during running, where the signal is dominated by strong,
repetitive footstep sounds. Consequently, it becomes highly challenging to extract heart-derived features under
these conditions. Therefore, EarMeter incorporates heartbeat-derived features (AM, FM, and RIIV) only

when clear heartbeat signals are detected. Specifically, when the classifier detects clear heartbeats, these
heart-derived features are extracted and appended to the extracted breathing audio features as input to the
subsequent predictor for breathing volume estimation. In contrast, during high-intensity motion, when heart
signals are obscured, the classifier triggers a fallback strategy that fills the heartbeat feature channels with zeros,
preserving input dimensionality without introducing unreliable information.
Distinguishing heartbeat signals from high-intensity motion signals from in-ear microphones has been well

explored in existing studies [43], which have demonstrated near-perfect performance. To validate this, we
implemented a lightweight support vector machine (SVM) classifier operating on each incoming audio window.
Motivated by the spectral and temporal profile differences observed between stationary and high-intensity
conditions, we extracted a set of discriminative audio features tailored to capture key signal properties relevant
for heartbeat quality assessment. Specifically, we extracted Mel-frequency cepstral coefficients (MFCCs) to capture
the spectral envelope, spectral contrast to characterize differences between peaks, and root-mean-square (RMS)
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energy to reflect signal amplitude variations. Features were extracted separately from the left and right in-ear
channels and then concatenated to form the input representation. To optimize the model, we employed a grid
search over key hyperparameters (kernel type, regularization strength, and kernel coefficient) with class balancing
enabled. The final model outputs whether a given audio segment contains clean heartbeat signals or not.
The SVM is trained on 18 users’ data (randomly chosen during training) and tested on the remaining 4 users

to ensure user independence of the train and test sets. We implemented 5-fold cross validation and report the
average results over 5 folds. The SVM classifier demonstrated strong performance, achieving an accuracy of
99.0%, precision of 99.0%, recall of 99.3%, and F1-score of 99.2%. These results highlight the model’s high reliability
in distinguishing between heart-clear and not-clear segments. The performance was consistent with results
reported in existing studies [43].

4.5 Improving Generalizability to Different Individuals

Due to differences in physiology, the breathing sounds and patterns generated by different individuals may diverge
significantly, which can impact performance. While it is possible to fine-tune the model to an individual [37], the
process would involve data collection with a medical grade device, making it unwieldy to set up. Moreover, the
placement of both right and left earbud channels may vary, resulting in varying levels of earbud occlusion and
observed breathing or heart intensities. This introduces variability even within the same person. We introduce
two additional mechanisms to improve EarMeter’s ability to generalize to more people: 1) label normalization to
mitigate inter-user variability and 2) earphone channel alignment to combat intra-user variability.
1) Label Normalization.We observed that the scale of ground-truth breathing volumes varies across subjects
due to physiological differences, which may lead to uneven optimization during training. To mitigate this, we
apply min–max normalization to the labels based on the global minimum and maximum values across all training
data:

𝑦𝑖 =
𝑦𝑖 − 𝑦

(train)
min

𝑦(train)max − 𝑦(train)min

(8)

where 𝑦(train)min and 𝑦(train)max are computed from all training samples, and 𝑦𝑖 and 𝑦𝑖 represent the labels before and after
normalization, respectively. This standardization helps stabilize the learning process and improve generalizability
by reducing label scale bias across different users. During inference, we apply the inverse normalization to recover
the original range of values.
2) Earphone Channel Alignment. The signals observed by the right and left in-ear microphone channels
may vary in intensity and characteristics on the same person due to variations in their placement, even if they
are observing the same breathing event. To mitigate these effects, we introduce an alignment framework, we
call “earphone channel alignment”, that guides EarMeter to learn the same embeddings for both right and left
microphones, in spite of these variations. Let 𝑓𝑙 and 𝑓𝑟 denote the embeddings of the left and right channels from
the same user, learned from Feature Extractor as shown in Figure 4. The alignment loss is defined as:

Lalign = sim(𝑓𝑙 , 𝑓𝑟 ) (9)

where the similarity metric we employ, sim(·, ·), is cosine similarity. This alignment loss is added to the original
loss from Equation 7 to obtain:

Ltotal = Lregression + 𝜆 · Lalign (10)

with 𝜆 controlling the trade-off between the task and alignment loss. This design encourages alignment of
microphone channels to produce more general features pertaining to breathing volume that are less prone to
overfitting based on confounding factors such as earbud placement.
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Fig. 10. System implementation and experiment setting.

5 Implementation and Data Collection

5.1 Prototyping

Although commercial ANC earphones contain in-ear microphones, APIs to access the data streams remain closed
to the public. As such, we designed and implemented a custom earphone prototype, as shown in Figure 10(a),
which consists of 3D-printed earbuds containing microphones that face inside the ear canal. We selected the
Knowles SPU1410LR5H-QB microphones [2] because of their flat frequency response between 10 Hz and 10 kHz,
which covers both heartbeat and breathing sound frequencies. Data from the microphones is recorded using a
Raspberry Pi 4 with an audio codec hat [1] and a custom PCB for amplification of the audio signal. We power the
device using a portable power bank and place it into a chest-worn bag to ensure portability. The sampling rate of
our in-ear microphone is set to 44,100 Hz.

5.2 Data collection

Ground Truth (GT) Device.We used the VO2Master Analyzer mask [4] (Figure 10(b)) for ground truth data
collection. The VO2Master is an oxygen consumption (𝑉𝑂2) analyzer that enables real-time monitoring of
respiratory volume. To ensure accurate airflow volume measurements, the device was calibrated using 1L and 3L
lab-certified air syringes under non-exercising and exercising conditions, respectively. Additionally, we attached
a microphone beneath the participant’s nose (positioned between the nostrils and the upper lip) to capture
high-SNR nose (and/or mouth) audio. Both ground truth data and nose (and/or mouth) audio were collected
solely for model training and evaluation purposes and are not required during system usage (i.e., inference).
Impact of Ground Truth Device on Breathing. Because participants need to wear the VO2Master mask

to collect ground truth, there is a concern that wearing the mask may impact how users naturally breathe or
the breathing sounds captured by the in-ear microphones. To assess this, we conducted a controlled empirical
comparison using recordings from the same participant under identical conditions (natural breathing while
stationary), with and without the mask. As shown in Figure 11, visual inspection of the spectrograms revealed no
noticeable distortion or abnormal spectral artifacts introduced by the mask.

To further quantify the similarity, we computed both time-domain and frequency-domain metrics. The Mean
Squared Error (MSE) between the two recordings was 0.0347. Given that the signals are normalized to the range
–1 to 1, this corresponds to an average root-mean-square (RMS) amplitude difference of approximately 18.6%,
indicating a relatively small deviation in waveform energy. Additionally, the Mel-Cepstral Distance (MCD), a
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Fig. 11. In-ear audio captured with and without wearing the VO2Master ground truth collecting mask. The differences in

captured signals are small, giving empirical evidence that wearing the ground truth device over the face has little impact on

the captured sounds of breathing.

perceptually motivated metric widely used in audio and speech analysis, was 3.81, suggesting a moderate level of
similarity in spectral envelope and perceptual characteristics.
As the recordings were made separately, small differences in breathing intensity, timing, or background

conditions are expected and unavoidable. Nevertheless, the results consistently suggest that the presence of the
mask does not introduce substantial distortion to the in-ear breathing signals. This aligns with our understanding
that earbud microphones primarily capture internal vibrations through bone or tissue conduction, and that the
air-conduction path is likely minimal or mostly blocked by the earbuds itself.
While a direct comparison of the estimated tidal volumes with and without the ground-truth mask would be

desirable, such a test is inherently unreliable because a participant’s breathing volume naturally varies across
cycles and over time, even under controlled conditions. Instead, our analysis focuses on the acoustic consistency
of the captured signals, which provides a more objective basis for assessing mask influence. Furthermore, similar
respiratory measurement masks (e.g., VO2Master, COSMED K5, or metabolic carts) have been widely adopted
in prior respiratory monitoring studies [6, 34, 57], establishing them as standard tools for obtaining reliable
ground-truth respiration data.
Data Collection Procedures. Our experiment was approved by the Ethics Committee at our institution.

When collecting data, we aimed to induce breathing at different intensities under both stationary and moving
scenarios. To achieve this, we collected data while resting, exercising, and cooling down. Specifically, we recorded
simultaneous in-ear audio, nose audio, and ground truth data while participants sat at rest for 10 minutes
(Figure 10(c)), ran on a treadmill for 10 minutes (Figure 10(d)), and then cooled down for 10 minutes. Before
running on the treadmill, participants were asked to select any two running speeds: one that was a comfortable
pace for them (i.e., a jog) and one that required more effort with higher intensity (i.e., a faster run). They ran at
each speed for five minutes. No specific breathing rates, intensities, or modes were imposed on participants in
order to capture natural breathing patterns during different activities. As a result, the collected data naturally
reflect a range of breathing volumes and intensities. In addition, to further evaluate the system’s robustness
across varied real-world conditions, we performed supplemental data collection in diverse acoustic environments,
including outdoor settings, as well as indoor scenarios with background music and conversational speech. While
these additional recordings were not part of a large-scale data collection effort, they provided valuable insight
into the system’s performance under more realistic and acoustically challenging conditions.
Participant Demographics. We collected data from 22 healthy participants (11 females and 11 males),

totaling 660 minutes of recordings. Participants ranged in age from 23 to 53 years (mean = 29.6, SD = 6.8),
with heights between 158 and 195 cm and weights from 50 to 94.3 kg. To highlight diversity, we summarize
key demographic characteristics in Table 2. Based on Body Mass Index (BMI), 14 participants fell within the
normal range (18.5–24.9), while two were underweight (<18.5), four overweight (25–29.9), and two obese (≥30).
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Table 2. Summary of participant demographics (N=22)

Variable Category Count

Gender
Female 11
Male 11

Age Group
20–29 years 12
30–39 years 8
40–59 years 2

BMI Category

Underweight (<18.5) 2
Normal (18.5–24.9) 14
Overweight (25–29.9) 4
Obese (≥30) 2

Runner Status
Runner 7
Non-runner 15

Additionally, seven participants self-identified as regular runners. This diverse participant pool supports the
generalizability and robustness of our findings across varying body types, fitness levels, and age groups.
Respiration volume statistics. The overall distribution of the respiration volumes in the collected data is

provided in Figure 12 (top), and the distribution of volumes per activity (i.e., breathing intensity) is provided
in Figure 12 (bottom). The dataset has an overall mean respiration volume of 1.1𝐿 with a standard deviation of
0.6𝐿. In the resting and the cooldown conditions, we see a much lower mean with a narrower standard deviation
(0.6±0.2𝐿 and 0.8±0.3𝐿 respectively), while the running condition has a much larger range and mean volume
(1.7±0.6𝐿). The difference in the respiratory volumes for each of the three conditions compared to one another is
statistically significant with 𝜌 < 0.05 using a Wilcoxon signed-rank test [62].

5.3 Model Training

We implement the neural network of EarMeter using PyTorch. Our Feature Extraction module incorporates the
2023 version of CLAP [24]. We optimize the network using stochastic gradient descent with a batch size of 32.
During training, both in-ear audio data and simultaneously collected nose audio data are used. For inference,
only the in-ear audio data is used as input. We train the model and evaluate the system’s performance using
leave-one-subject-out (LOSO) setting.

6 Evaluation

6.1 Evaluation Metrics

We evaluate EarMeter performance using the following evaluation metrics:
Mean Absolute Error (MAE). The average error of the prediction, defined as the average of the absolute

difference between the ground truth measurement and the prediction for each window. The MAE is given in
units of 𝐿 (liter).

Mean Absolute Percentage Error (MAPE). The average percentage error of the prediction (given in % or as
a decimal i.e., %/100), computed as the average of the ratio between i) the absolute value of the difference of the
ground truth measurement and the prediction, and ii) the ground truth measurement for each window.
Pearson Correlation (PC, 𝑟 ). The Pearson Correlation is a measure of the linear relationship between two

variables (in this case the prediction and the ground truth). It measures both the strength and direction of the
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relationship where 𝑟 = 1 represents a perfect positive correlation (the desired case for this system), and 𝑟 = 0
represents no correlation.

6.2 Overall Performance

We first evaluated the overall performance of EarMeter, followed by its performance across a series of related
factors encountered in practical scenarios.
Overall Performance. As shown in Figure 13, EarMeter achieves a MAE of 0.20𝐿 and a MAPE of 18.19%,

meeting the clinically required standard of 20%, under LOSO. The scatter plot in Figure 13 compares the respiration
volume predictions from EarMeter with the corresponding ground truth values. The predictions and labels are
well correlated, achieving a PC coefficient (𝑟 ) of 0.89. The predictions fit accurately across the entire range of
ground truth respiration volumes, with only a few sparse outliers. The error is symmetrically distributed around
the ground truth values, indicating no significant bias, overestimation, or underestimation in the predictions.
Performance across breathing intensities. Figure 14 shows the overall performance of EarMeter across

different breathing intensities. We partition the ground-truth respiration volumes into six ranges with equal
numbers of samples. Each marker in the figure represents the center of a range. The overall distribution of
respiration volumes spans from 0.25 L to 3.5 L, covering the intensity levels observed in humans from rest to
moderate exercise [55]. Overall, EarMeter performs well across varying intensity levels. MAPE is smaller than
20% across all intensities except for the first one, which is because at lower respiration volumes, even small
absolute errors contribute proportionally more to the overall percentage error due to the smaller scale of the
values. At higher respiration volumes, while MAE increases slightly due to the larger scale, these larger values
lead to relatively lower percentage errors. This performance pattern indicates that EarMeter maintains reliable
accuracy across a wide range of intensities, making it a robust and effective system.

Performance under different scenarios. Figure 15 shows the overall performance of EarMeter under both
stationary and moving scenarios. This experiment evaluates the system’s performance with faint breathing
sounds or in the presence of footstep interference from in-ear audio. We can observe that EarMeter delivers
promising performance in both challenging scenarios, i.e., faint breathing sounds at rest and slightly stronger
breathing sounds amidst footstep noise during running. It achieves a MAPE of 17.3% in stationary conditions and
19.6% in moving conditions, both well within the clinically required standard of 20% [65].

Performance under different speeds. Furthermore, we present the system’s performance at different speeds,
with varying breathing intensities, in Figure 16. The breathing intensity ranges between [0.18-3.00), [0.53-3.26),
and [1.45-3.49) liters, corresponding to the speed ranges [4,6] 𝑘𝑚/ℎ, (6,8] 𝑘𝑚/ℎ, (8,12] 𝑘𝑚/ℎ, respectively. Overall,
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EarMeter achieves satisfactory performance across these conditions, with MAPE values of 20%, 19%, and 24%,
respectively. The slightly higher error in the speed range of (8, 12] km/h is attributed to a subset of samples
with extremely high breathing volumes, resulting in a noticeable distribution shift from the training data and
lowering the average performance. Nevertheless, these results indicate that the system is robust to varying levels
of footstep interference and a wide range of breathing intensities.

Impact of fitness levels. We also explored EarMeter’s behavior across participants of varying fitness levels,
specifically runners and non-runners, as shown in Figure 17. Runners or people of higher fitness tend to have
higher average breathing volumes (in our study: 1.18 L vs. 1.03 L for non-runners), which naturally leads to a
slightly higher MAE. However, the MAPE remains consistent between the two groups (17.9% for runners vs.
18.2% for non-runners), indicating that EarMeter maintains consistently high accuracy across different fitness
levels.
Performance across individuals: Figure 18 reports the overall performance of EarMeter for each subject

under the LOSO setting. It is evident that EarMeter achieves satisfactory performance across users, with most
participants (19 out of 22) lower than 20%MAPE, meeting the clinically required standard of 20%. The higherMAPE
observed for User 5 is due to this participant’s relatively low breathing volume compared to other participants
(i.e., a significant distribution shift compared to the training data). To better understand this case, we further
examined the Pearson correlation coefficient of User 5, which remains high at 𝑟 = 0.91. This indicates that while
the model struggles with predicting the absolute scale for this user, it still accurately captures the temporal
dynamics and overall trend. In the future, we expect that with a larger and more diverse dataset during the initial
data collection and training phase (e.g., through collaborations with sports centers, community health programs,
or clinics), it will help improve the model’s ability to generalize to such cases in the future.

Performance under noise levels. We evaluated the performance of EarMeter under varying noise levels in
indoor and outdoor settings.
We first evaluate the performance of EarMeter under different ambient noise conditions using the overall

dataset. During data collection, ambient noise levels ranged from 30 dB to 60 dB, influenced by treadmill operation
and occasional background sounds such as corridor activity or air conditioning. To assess robustness, we grouped
the data by noise level and evaluated model performance across these groups. As shown in Figure 19(a), EarMeter
maintains consistent performance across all three noise levels, achieving near 20% MAPE in each case. This
robustness is due to the occlusive design of the earbuds, which effectively block external noise and minimize its
impact on the captured signals.
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To further evaluate the system’s robustness under more diverse acoustic conditions, we collected additional
data under the following settings:

• Outdoor environments: We collected data in areas near active construction sites and traffic, where noise
levels ranged from 50 to 60 dB. These settings included various ambient sounds such as vehicle engines
and construction machinery.

• Indoor environments: We collected data in rooms with background music playing through a speaker and/or
active conversations occurring nearby. Noise levels were maintained around 62 dB to simulate real-world
indoor environments such as offices, cafés, or gyms.

Figure 19(b) presents a comparison of the system’s performance across these noisy scenarios. Overall, the
results demonstrate EarMeter’s robustness to acoustic interference, with minimal performance degradation
observed under different noise conditions. This robustness is largely attributed to the strong occlusion effect
provided by in-ear acoustic sensing, which helps isolate internal physiological signals from ambient noise.

Performance under different breathing modes. In the previous experiments, participants breathed as they
naturally would. To test the performance of EarMeter under different breathing modes, we conducted additional
data collection where participants were asked to breathe through the nose only, mouth only, and in a mixed
pattern, under both stationary and running conditions. The results are shown in Figure 20, which demonstrate
that the model maintains consistent performance across all modes, with MAPE values remaining below 20%.
This robustness can be attributed to two factors. First, during our original data collection, participants were not
restricted to a specific breathing mode, allowing the model to be exposed to natural variations, including nose,
mouth, and mixed breathing patterns, during training. Second, as discussed in Section 4.3.2, the nose microphone,
positioned between the nostrils and the upper lip, is capable of capturing airflow sounds from both nose and
mouth breathing for training the teacher model that guides our student model.

Power and Latency. We implement EarMeter on a Samsung Galaxy S24 smartphone and measure the latency
and energy consumption of EarMeter. In summary, it requires 488.4 ms to process our input window size of
7 seconds (i.e., real-time). Through the Android Power Profiler, continuously performing inference consumes
168 uA of battery. If the phone only runs EarMeter continuously, the Samsung Galaxy S24’s battery capacity of
4, 000 mAh would last for more than 990 days. In practice, smartphones typically operate for only a few days per
charge, so this additional power draw has a negligible impact on overall battery life.
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Fig. 21. Performance of ablation studies.
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6.3 Ablation Study

Next, we present an ablation study to assess the effectiveness of each technical component proposed in EarMeter.
We systematically remove each module individually, as well as all design components together, resulting in four
intermediate variants and one full version of EarMeter for comparison.
• EarMeter (Full): The complete version of EarMeter using the CLAP backbone and all three technical compo-
nents: 1) generalization design (ear channel alignment + label normalization), 2) knowledge transfer, and 3)
heart feature incorporation.

• EarMeter w/o Generalization (V1): The full model with the generalization design component removed, i.e.,
without earphone channel alignment and label normalization.

• EarMeter w/o Knowledge Transfer (V2): The full model with the knowledge transfer component removed.
• EarMeter w/o Heart Features (V3): The full model with the heart feature incorporation removed.
• EarMeter Baseline (V4): A simplified version of EarMeter with all three technical components removed, i.e.,
only the CLAP backbone is used, without generalization, knowledge transfer, or heart features.
Impact of Generalization Design (V1). As discussed in Section 4.5, we incorporate label normalization and

“earphone channel alignment” to improve the generalizability of our model to new participants without fine tuning,
which would require specialized measurement devices. The ablation results in Figure 21 (V1) demonstrate the
impact of removing this design: only 10 out of 20 subjects achieve a MAPE below 20% without these components.
In contrast, incorporating these additions enables EarMeter to achieve a MAPE below 20% and meet the clinical
standard for respiratory volume estimation on 19 out of 22 subjects. This highlights the effectiveness and
robustness of our generalization strategy in supporting consistent performance across diverse individuals.

Impact of Knowledge Transfer (V2). As ablation results shown in Figure 21 (V2), removing the knowledge
transfer module leads to a performance drop: MAE increases from 0.20 L to 0.24 L, and MAPE rises from 18.19% to
22.16%. The Pearson correlation also decreases from 0.89 to 0.84, demonstrating the effectiveness of the knowledge
transfer design. In addition, 14 out of 22 subjects exceed the 20% MAPE threshold without knowledge transfer,
compared to only 3 when using our complete model (Full). These results show that by leveraging high-quality
nose audio to guide the student model, EarMeter is able to accurately predict breathing volume from lower-SNR
in-ear audio.

Impact of Integrating Heartbeat Features (V3). Comparing the ablation results in Figure 21 (V3) with the
full model (Full), it is evident that incorporating heartbeat features improves performance. This addition reduces
the MAE from 0.21 L to 0.20 L and the MAPE from 20.26% to 18.19%, while the Pearson correlation increases from
0.88 to 0.89. Notably, the number of subjects with MAPE > 20% decreases from 10 to 3. These results suggest that
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integrating heartbeat features provides complementary physiological information that enhances the model’s
ability to estimate breathing volume more accurately.
Impact of Removing All Three Design Components (Baseline) (V4).When all three technical compo-

nents, i.e., generalization design, knowledge transfer, and heartbeat feature integration, are removed, the model
performance drops significantly. As shown in Figure 21 (V4), the MAE increases from 0.20 L to 0.26 L, and the
MAPE rises from 18.19% to 23.58%. The Pearson correlation also declines from 0.89 to 0.81. Furthermore, the
number of subjects achieving MAPE below 20% drops sharply from 19 to only 6. These results highlight the
substantial contribution of each design component to the overall performance and generalizability of EarMeter.

6.4 Case Studies

Minute Volume Estimation. Minute volume, defined as the total amount of air inhaled or exhaled per minute,
is an important metric for assessing overall respiratory effort in daily and exercise contexts [34]. To evaluate
EarMeter’s performance on longer temporal scales, we compute minute volume by multiplying the model-
predicted average volume per breath by the corresponding number of breathing cycles within each one-minute
segment measured from the Zephyr BioHarness 3.0 chest strap [3], and compare the results with the ground
truth. As shown in Figure 22, the model achieves an MAE of 3.63𝐿, a MAPE of 18.19%, and a correlation of 0.95.
The relatively larger MAE reflects the accumulation of small per-breath estimation errors over multiple cycles,
while the low MAPE and high correlation demonstrate that the model maintains accuracy and robustness when
aggregating predictions over extended durations.
Total Volume Estimation.We also consider total air volume, defined as the total amount of air inhaled or

exhaled within a given analysis window. This metric provides a practical view of the model’s ability to capture
overall respiratory effort, which is important for many long-term monitoring and activity-level analyses. The total
volume is obtained by multiplying the predicted average tidal volume per window by the number of breathing
cycles measured from the Zephyr BioHarness 3.0 chest strap [3]. We then compare the estimated total volume
with the ground truth reference. As shown in Figure 23, the model achieves an MAE of 0.73𝐿, a MAPE of 18.19%,
and a correlation of 0.95. The relatively larger MAE mainly results from the accumulation of small per-breath
errors over multiple cycles within each window, while the MAPE and correlation remain comparable to those in
average tidal volume estimation, indicating consistent performance across aggregation levels.

This case study indicates that the system performs consistently well across various breathing volume-related
metrics. The comparable performance in estimating per-breath metrics (e.g., average tidal volume) and aggregate
metrics (e.g., minute volume and total volume) demonstrates that our model maintains accuracy and robustness
across different temporal scales. These results highlight the broad applicability and reliability of our approach.

7 Discussion

Subject variability and scaling to larger, diverse populations. Our initial study included 22 healthy partici-
pants across a wide range of ages (20-60), runners and non-runners, and equal males and females. Experimental
results and ablation studies demonstrate the viability of EarMeter in adapting to new subjects, even without
fine-tuning. Across participants, EarMeter achieved a MAPE below 20% for all but three individuals, thus meeting
the clinical accuracy standard in most cases. For the few participants where performance degraded, the main
contributing factors were distributional differences from the majority cohort and limited available training data.
Nevertheless, our findings indicate that many practical challenges for real-world deployment, such as variability
introduced by different breathing styles (e.g., mouth vs. nose breathing), can be largely mitigated when sufficient
high-quality data are available. We expect that future studies with larger and more demographically diverse
cohorts will further reduce inter-subject variability and enhance the model’s generalizability.
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Generalizability. Although it is possible to fine-tune EarMeter to a new user using a small amount of data
from the target user, the process would involve a controlled setting where the user needs to wear specialized
measuring devices (VO2Master mask). As such, it is important to consider the possibility of creating a model
that can generalize to most users out-of-box. In this work, we introduced mechanisms to improve zero-shot
user generalizability (label normalization and “earphone channel alignment”) that enabled EarMeter to meet the
clinical standard (MAPE < 20%) on all but three participant. This provides promising evidence that a model that
can generalize to a wide range of participants without fine-tuning is possible. We plan to further optimize our
training and inference pipelines and conduct larger studies to explore this in future work.
Clinical applicability. In this work, we explored the possibility of estimating breathing volume with earables in
daily living conditions. Having visibility into breathing volume provides a picture of general health and wellness
as we age and serves as an early sign of respiratory illnesses. Beyond daily living scenarios that we explored
in this work, breathing volume is also an important biomarker in clinical contexts. Healthcare providers use
breathing volume to identify and manage sleep disorders [33], diagnose and track respiratory diseases such as
chronic obstructive pulmonary disease (COPD) [6] and asthma [57], and monitor patients under anesthesia or
mechanical ventilation [23].
Although EarMeter demonstrates strong performance in estimating breathing volume under controlled con-

ditions with healthy individuals, it is important to emphasize that the present work represents an early step
toward potential clinical translation rather than a clinically validated system. All experiments were conducted in
non-clinical environments, and the model has not yet been evaluated in patient populations. Further validation,
calibration, and robustness analyses across broader health conditions will be necessary before EarMeter can
be considered for clinical use. In future work, we plan to explore and evaluate the applicability of EarMeter in
clinical settings.

8 Conclusion

In this paper, we introduce EarMeter, the first system to leverage in-ear microphones for continuous respiration
volume estimation seamlessly across varying breathing intensities. Our approach provides a non-intrusive and
accessible solution for monitoring respiratory volume in healthy individuals during everyday life. EarMeter
leverages (1) a pretrained-model-based feature extraction technique, (2) the breathing–heartbeat coupling effect,
(3) a nose-audio-based knowledge transfer strategy, and (4) a generalization strategy to address four key challenges:
limited labeled data, faint breathing sounds, interference from footsteps, and generalization to unseen users.
Experimental results demonstrate the effectiveness of EarMeter across diverse daily conditions. This work lays
the foundation for using earphones as personal health companions for continuous and unobtrusive respiratory
monitoring, paving the way for future wellness and preventive-health applications.
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