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Abstract— Supervised machine learning (ML) is revolutionis-
ing healthcare, but the acquisition of reliable labels for signals
harvested from medical sensors is usually challenging, manual,
and costly. Active learning can assist in establishing labels on-
the-fly by querying the user only for the most uncertain –and
thus informative– samples. However, current approaches rely
on naive data selection algorithms, which still require many
iterations to achieve the desired accuracy. To this aim, we
introduce a novel framework that exploits data augmentation
for estimating the uncertainty introduced by sensor signals.

Our experiments on classifying medical signals show that
our framework selects informative samples up to 50% more
diverse. Sample diversity is a key indicator of uncertainty,
and our framework can capture this diversity better than
previous solutions as it picks unlabelled samples with a higher
average point distance during the first queries compared to the
baselines, which pick samples that are closer together. Through
our experiments, we show that augmentation-based uncertainty
makes better decisions, as the more informative signals are
labelled first and the learner is able to train on samples with
more diverse features earlier on, thus enabling the potential
expansion of ML in more real-life healthcare use cases.

I. INTRODUCTION

The limited availability of good quality and labelled health
data from sensors restricts the potential expansion of machine
learning (ML) in real-life use cases [1]. Active learning [2]
(AL) introduces a solution to reduce the cost of labelling raw
signals, a task known to be heavily manual and laborious.
The key idea of AL is that algorithms that independently
pick the samples on which they are trained will achieve
superior performance with fewer epochs. The operation of
an AL system relies on the existence of an “oracle”, which
refers to either a human or an automatic system capable
of supplying the labels for a given sample when queried.
AL interactively queries the oracle to label new –previously
unlabelled– signals at each training pass [3], making it ideal
for clinical tasks where labelled samples are scarce. AL
essentially prompts the oracle about the most uncertain points
to achieve a higher accuracy with only a limited set of
labelled sensor signals, yet it is not only ideal for training on
small unlabelled datasets but can also achieve better accuracy
with fewer epochs than training on an entire dataset.

Previous studies have employed data augmentation in AL
to increase the generalisation ability of algorithms, but its
use for uncertainty estimation remains largely unexplored.
For instance, using augmentation for consistency estimation
on each AL cycle improves the performance of the training
step [4], yet there is no exploration of its use at test time
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for uncertainty quantification. Tree search has been used to
generate augmentations [5] too, but this approach is very
specific to language models. Augmentation has also been
used at test-time [6] but is based on the entropy of the
predictions of just one augmented set without leveraging the
difference observed across various augmented sets. In the
context of wellbeing, wearable stress and affect detection
has been explored using Monte-Carlo Dropout to represent
uncertainty [7], but not using augmentation thus restricting
the use to only models that have been trained with dropout
regularisation. The use of AL has been explored for activity
classification [8], but without featuring a purely uncertainty-
based approach for assessing the benefits and costs of
labelling a given sample. Finally, augmentation has been
explored on physiological signals [9], but in semi-supervised
learning instead of AL.

Our contributions are centred around employing data aug-
mentation to capture uncertainty during the active learner’s
sampling phase, obtain higher and more exact accuracy
metrics during testing, and explore the application of our
augmentation-based estimation technique to AL tasks for
signal processing. Data augmentation is typically used to
enhance datasets with a restricted amount of data points,
but it also proves insightful for uncertainty estimation. Our
experiments show that our approach queries the oracle for a
more diverse set of samples, speeding up convergence to a
model’s ideal accuracy and directly translating to a reduced
burden for the users who need to label fewer health samples.

II. METHODS

This section discusses our AL framework, which uses data
augmentation to capture uncertainty on biological signals.

Active Learning. When training on unlabelled data, an
active learner starts by randomly asking the oracle to supply
the labels for a small batch of samples and trains on them.
This forms its initial labelled training set and it subsequently
requests the labels for a further batch of samples, but now
the queried signals are carefully chosen. The samples in
the newly-labelled batch then enter the labelled pool. The
learner can use the new knowledge to proceed with training
in a usual supervised manner, while also deciding during the
test time of its current iteration which instances to query
next. This process can be repeated until a target accuracy is
reached or until the oracle stops the training.

Implementation of our Active Learner. In AL, the size
of the training set changes from epoch to epoch and an extra
querying functionality should be implemented to choose the
most uncertain points to label. In our case, we have no



prior knowledge about the physiological signals, therefore
the samples for the first query are sampled randomly, with the
active learner then stepping in to pick the most informative
signals for all subsequent queries issued to the oracle. At this
stage, the novelty of our solution lies in the sample selec-
tion strategy which uses our augmentation-based uncertainty
estimation technique to ensure that the samples fed to the
oracle are carefully selected and as diverse as possible. See
Algorithm 1 for a summary.

Test-Time Uncertainty with Augmentation. Data aug-
mentation is commonly used to increase the number of
samples for training in small datasets. However, it can also
be effectively employed for uncertainty estimation because
it captures data uncertainty, consistent across all samples,
rather than model uncertainty, which might develop when a
model is trained with inadequate data.

The first step in our framework consists of applying a
set of augmentations Q to a dataset at test time when the
previous training iteration of the active learner has ended. At
this point, they are used to augment the pooled dataset and
capture its uncertainty. This yields |Q| additional datasets,
each composed of the same number of samples placed in the
same order. With the original non-augmented dataset, there
are |Q| + 1 datasets with the same initial signals, each dif-
fering from the other by applying different transformations.

Our approach for capturing uncertainty has two steps: first,
we ask the classifier model to predict the label for each signal
in the unlabelled pool, and we use softmax to calculate the
probability of the prediction being correct. Then, we repeat
the same task for all the transformed versions of that signal
and calculate the entropy of the various probability values;
the higher the entropy, the larger the uncertainty will be.

Better Accuracy with Augmentation. In addition to
using transformations for capturing uncertainty, we use the
same set of transformations for test-time accuracy mea-
surement (see Section III). Given that |Q| additional test
datasets are generated through this process, they are used
independently to measure the model’s accuracy after each
epoch and at the end of the learning process. The mean of
the accuracy values resulting from these datasets and the
original test dataset is significantly more robust. As such, it
forms the final accuracy measure considered in our findings.

Early Stopping Strategy. Since manually labelling bio-
logical signals is laborious, setting a threshold on how much
the algorithm is allowed to ask is imperative. After all, a
cost could be associated with each query to the (human or
automatic) oracle. Given this, our framework includes an
early stopping with a “patience” strategy. The user can decide
on the minimum increase in accuracy over the last iterations
(based on desired patience) required to invoke early stopping
and there is a variable E in our algorithm that can be set to
indicate the minimum increase in accuracy over its last three
running iterations required to continue the training.

III. EXPERIMENTS

Datasets. To simulate the human oracle labelling on both
binary and multi-class classification tasks, we use the below

Algorithm 1: Augmentation-Based AL.
Input : #Samples per query N , Augmentations Q
Output: Labelled data DL, Trained model ML

Data : Unlabelled data DU , Early stopping E
1 A← augment(DU , Q) /*Apply Q to DU*/
2 while Max queries and E not reached do
3 for 5 augmentations from Q do
4 H ← H ∪ softmax probabilities(AQ)

/*Get uncertainty with entropy*/
5 H ′ ← argmax

x
−

∑
i P (yi | x) logP (yi | x)

6 DQ ← argmax (H ′, N) /*Best points*/
7 DN ← query(DQ) /*Query user*/
8 DL ← DL ∪DN /*Add to DL*/
9 DU ← DU \DN /*Remove from DU*/

10 ML ← learner.train(DL) /*Update*/
11 return ML, DL

health datasets that, although labelled, are processed so that
the respective labels are kept separately and fed to the learner
only when queried for each sample.

Epileptic Seizure Recognition [10]: This dataset consists
of EEG recordings modelled as time series. It features 11 500
labelled samples from on-body sensors with 178 attributes
each. The labels identify if the subject suffered from an
epileptic seizure, further classifying the cases in which the
subjects did have seizures into four classes depending on
whether they had their eyes open or closed during the data
collection process, for instance. As the boundaries amongst
the four non-epileptic classes are insignificant, this dataset is
mostly used for binary classification in practice [10].

Heart Disease Recognition [11]: This ECG dataset iden-
tifies heart disease in patients through 14 attributes. The
presence of heart disease is further categorised in 4 classes.
Although most experiments to date concentrate on distin-
guishing the absence of heart disease (label 0) from its
presence (labels 1, 2, 3 and 4) [11], it is intriguing also to
try a multi-class experiment to examine how our uncertainty
estimation technique compares to the baselines.

Baselines. The baselines we compare our approach to
are based on uncertainty sampling. Uncertainty sampling is
the most frequently-used approach in AL [12], as it only
queries the label for a sample if its classification uncertainty
is high. In contrast to approaches like passive learning which
relies on random sampling, an uncertainty-based strategy
is optimal for interactive labelling as it makes informed
decisions [4]. The most widely-used uncertainty measures
are the classification uncertainty, the classification margin,
and the classification entropy [13].

The classification uncertainty of an instance x is the
simplest utility metric, defined as:

U(x) = argmax
x

1− P (ŷ | x), (1)

where ŷ is the most likely prediction for that instance.
A further uncertainty measure is the classification entropy

of the class probabilities, which is proportional to the average
number of guesses required to find the correct class:



H(x) = argmax
x

−
∑
i

P (yi | x) logP (yi | x). (2)

The classification margin is the difference of the probabil-
ities of the first (ŷ1) and second (ŷ2) most likely predictions:

M(x) = argmin
x

P (ŷ1 | x)− P (ŷ2 | x). (3)

Despite these approaches calculating uncertainty, they
don’t use augmentation. Thus, and given how common they
are for uncertainty sampling [13], they form our baselines.

Transformations. Our approach can function with any
augmentations Q. In our experiments, we add Gaussian noise
to the input signal, shift it forwards/backwards along the
temporal dimension, randomly reverse it, and flip its polarity.
In these experiments, a total of |Q| = 11 augmentations is
available to the active learner, as each augmentation is used
up to three times with different parameters. Coupled with the
non-augmented version of each sample, the system has 12
options to pick from at each iteration to calculate uncertainty.

The decision to use these augmentations results from
a thorough study of prior literature on EEG and ECG
signals. For instance, despite many options being available
to add noise to EEG signals, the fact that they have strong
randomness and non-stationarity meant that we could not
use solutions that add local noises like Poisson, Salt, or
Pepper [14]. As such, we opted to rely on adding Gaussian
noise, which does not locally affect EEG signals’ features.
Various studies on EEG and ECG signal processing use
Gaussian noise to enlarge the size of their dataset and avoid
issues like overfitting [15], [16]. Reversing the time series
was also helpful for our use case where the samples are
considered independently with no sliding window, as it has
the same effect as if the input signal is delayed, turning
the time t into −t and, thus, still allowing the network to
learn useful relationships. Scaling and vertical and horizontal
flipping to augment the ECG signals were further identified
as optimal augmentations for our task, too [17].

Setup. For our experiments, we use modAL 0.4.1 [18] as
an AL tool and TensorFlow Keras 2.8. For our models, we
rely on a CNN architecture with three 1D convolutions, max
pooling, and a set of dense and flattened layers for our EEG
experiments and on a Logistic Regression model for our ECG
experiments. We employ a 70/30 and a 75/25 train/test split
for the EEG and ECG datasets, respectively. Since in the
absence of prior knowledge, the samples for the first query
are chosen randomly, we set the value of initial samples to 50
for the EEG dataset and to 5 for the ECG dataset, which is for
both one of the lowest possible values in comparison to the
size of the respective datasets. Additionally, since the set of
augmentations Q may vary depending on the task, our system
calculates the entropy at each iteration using a randomly
sampled set of 5 out of the |Q| + 1 datasets, making the
solution optimised for a wider variety of biological signals.

Results. In our experiments, we focused on binary classi-
fication with the Epileptic Seizure EEG dataset and on both
binary and multi-class classification with the Heart Disease
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Fig. 1: Epileptic Seizure Recognition Experiment

(a) Avg. Euclidean Distance (b) Validation Accuracy

Fig. 2: Heart Disease Binary Classification Experiment

(a) Avg. Euclidean Distance (b) Validation Accuracy

Fig. 3: Heart Disease Multi-Class Experiment

ECG dataset. Although the Heart Disease ECG samples
are classified into five classes, we opted to first focus on
distinguishing the presence of heart disease (labels 1-4) from
the absence (label 0) in a binary fashion, similar to how this
dataset is mostly used in practice [11]. After this experiment,
we performed multi-class classification with the ECG dataset
to examine the behaviour of our proposal in this case too.

The results of the query-over-query validation accu-
racy achieved during our experiments are depicted in Fig-
ures 1b, 2b and 3b with a solid line for our proposed solution
and with dashed lines for the baselines. The validation
accuracy results for the baseline query strategies are derived
from the original test dataset, while the results concerning the
proposed solution are derived from the mean of the accuracy
of the original and all the augmented test datasets.

At first glance, the major conclusion is that capturing the
uncertainty of the input samples through data augmentation
at each query of the learner stabilises the convergence to
the maximum validation accuracy. However, going more in-
depth with this analysis, we investigated the first 10 queries
more closely, being the ones of the highest interest for
determining the diversity of the samples. In all experiments,
the accuracy does not substantially change in subsequent
queries, so it is clear that the most significant queries are
those coming first. In other words, with the early stopping
functionality enabled, the learner would stop querying the
human or automatic oracle for more labels from that point
onwards. Consequently, the system must have managed to
label the most informative samples before that point.

Through our study of those initial queries, we found



Epileptic
Seizure

Heart Bi-
nary

Heart Multi-
Class

Our Solution 2383.0 57.4 54.2
Classifier Uncertainty 1706.5 49.7 54.9
Margin Sampling 1549.2 50.7 51.7
Entropy Sampling 1669.1 56.9 54.3

TABLE I: Avg. Distance of Samples for First 10 Queries

that the average Euclidean distance between the queried
points of our solution is notably higher than the one of the
baselines. Sample diversity, as represented by the average
euclidean distance, is crucial in AL [19], and our framework
can capture this diversity better than previous solutions by
choosing distant samples in the pool.

As observed in Figure 1a, our approach picks distant
samples while the baselines initially ask the user to label
samples that are closer together due to their least sophisti-
cated labelling request algorithm. Additionally, in the EEG-
based epileptic seizure recognition task, for instance, the
average point distance of the first 10 batches of points
queried by our solution is 2 383, while the respective one
is 1 706, 1 549, and 1 669 for the uncertainty, margin, and
entropy sampling baselines, respectively. Consequently, our
approach picks sensor signals up to 50% more diverse than
the alternatives, making it clear that an augmentation-based
uncertainty measure makes better decisions earlier.

Even in the ECG-based heart failure recognition task, our
approach picks samples up to 15% more diverse, as indicated
by the average euclidean distances recorded amongst the
samples picked during the first 10 queries (see Table I).
The average distance recorded for our solution is 57.4,
the highest number observed for this experiment, showing
that the more informative points are labelled first, and the
learner can train on signals with a diverse set of features.
Finally, our augmentation-based query strategy reaches a
final classification accuracy that is 5% higher compared to
the alternatives for the multi-class heart failure experiment
while also coming imperceptibly second in terms of the
average distance of the samples for the first 10 queries issued.

Of course, our multi-class heart failure experiment reaches
a lower accuracy than the binary one, but this is expected
as the model does not have to distinguish the samples into
two classes but five: this is also the case for the baselines.
On a further note, the fact that our approach chooses more
diverse samples during its earlier iterations will reassure the
human or automatic oracle responding to the learner’s queries
for labels at each iteration. Our proposal ensures that they
will be labelling the most informative samples, while the
baselines tend to choose less varied samples, reducing the
algorithm’s generalisation ability at this stage.

Concerning early stopping, setting the variable E = 0.05,
for instance, means that the learner will stop generating
queries when the increase in accuracy over its last three
iterations is ≤ 5%. Based on our findings, this means that the
total queries can be lowered by up to 75% compared to when
early stopping is disabled (see Figures 1b, 2b and 3b). This
can vary according to the cost of labelling, but it’s evident
that users will have to label fewer samples.

IV. CONCLUSION

AL can address the low availability of labelled health
datasets by picking the samples to label during the learning
process itself. Paramount to its success is the existence of
an effective sampling technique that decides on the most
uncertain, and thus informative, samples at each iteration.

We propose an AL framework leveraging augmentation to
both capture uncertainty during its sampling phase and to get
more precise accuracy metrics at test time. Augmentation is
commonly used to increase the size of small datasets, but
we found that it can be used for better-informed sampling in
AL too. Our experiments show that our solution queries the
oracle for diverse samples from its first iterations, while also
having a lower variance than existing uncertainty sampling
approaches. This can increase the adoption of ML in health-
care, as labelling more diverse samples directly translates to
cost savings due to the fact that only a few queries would
normally be answered by a clinician in the AL loop.
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