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Abstract—As their computational capabilities improve, atten-
tion has turned towards deploying deep learning models on edge
devices to process the locally generated sensor signals. While
these devices remain comparatively resource-constrained, early
exit approaches have been shown to reduce the computational
demands of on-device model personalisation training, which
improves the accuracy and latency of a generalised model by
fitting it to a specific use scenario. However, existing methods
provide no mechanism to select the most informative signals
for training. This work aims to improve prior approaches by
interpreting the early exits as an ensemble of models trained
with a joint loss function, retaining prior approaches’ energy
and latency savings while improving the accuracy. Additionally,
it provides a principled mechanism to choose the signals that
introduce higher uncertainty to the prediction due to the distri-
butional shift and include them in the personalisation procedure,
reducing energy consumption and latency. The key findings are
a 42% energy saving with exit-only retraining versus a standard
(without intermediate exits) model, which increases up to 79%
when a subset of training samples was chosen according to the
uncertainty estimation, alongside a 4.23pp increase in F1 score.

Index Terms—Personalisation, Uncertainty, Early Exit, Sensor
Signal

I. INTRODUCTION

In systems dealing with bioelectrical or motion signals,
the variation across users is particularly high due to the
innate differences in body composition or altered functions
caused by medical conditions [1], [2]. A deep learning model
that more closely fits the distribution of a specific user is
acutely desirable since it can improve accuracy and therefore
functionality in the given application scenario [3]. This may be
achieved by retraining the model using signals collected from
the specific user in a process referred to as personalisation [4].
Due to their application context, many devices typically collect
a multitude of specific user data; hence performing the per-
sonalisation process on-device is preferred [5]. Nonetheless,
this is challenging since these devices lack the computational
resources for training neural network models effectively, par-
ticularly alongside sustained use. This may be avoided with
a distributed computing approach, processing the signals on
an external server, but this adds latency and complexity to the
system and unnecessary sharing of sensitive user data [6].

There exists a selection of methods for performing model
personalisation on-device. Several transfer learning approaches
have been used to personalise EEG-based affective models
for brain-computer interfacing, leading to a more accurate
personalised model [7]. Further, few-shot learning in gaze

estimation achieved increased accuracy while running on-
device in real time [8]. However, in general, these meta-
learning methods require high volumes of training data, and
the full adaptation of the model to the distributional shift tends
to be a relatively gradual process [9].

Early exit neural networks add confidence-based interme-
diate classifiers to the main neural network model, which
allows the inference process to complete prematurely if the
early model layers produce a prediction above a given thresh-
old [10]. State-of-the-art approaches employ various exiting
strategies, including dynamic threshold adjustment and break-
ing down the network into smaller sequentially-executed sub-
networks [11], [12]. However, these aim to optimise model
execution as opposed to model training, which is the main
challenge for performing personalisation on-device.

Despite the small added memory and computation cost
of these classifiers, alongside the additional hyperparameter
to tune caused by their application-specific placement, the
inherent structure of early exit neural networks is especially
suitable for performing time and energy-efficient model per-
sonalisation on-device. This has been demonstrated in recent
work, which achieved higher accuracy and faster training by
freezing the main model (‘backbone’) and just training the
exits [5]. However, this method does not include a principled
way of differentiating and selecting the best samples for
personalisation training. Additionally, it assumes that the last
exit is the most accurate, which may not be true due to network
overthinking - the situation in which a correct prediction is
reached before the final layer and potentially changes to an
incorrect classification over the following layers [13]. Further
accuracy improvements may be made by treating the model
as an ensemble of early exits [14], [15].

This work aims to improve on previous approaches to on-
device personalisation by interpreting the early exit neural
network as an ensemble of models with a shared backbone.
Training the exits with a joint loss function takes into account
all neighbouring exits rather than just the accuracy of the
last one as in previous work, therefore boosting the resulting
accuracy while retaining the latency and energy benefits. In
our evaluation, we explore the contribution of each exit to
the overall accuracy, noticing that the last exit (backbone)
often underperforms. This finding further highlights that the
assumption considering the last exit as the most accurate is
not valid and, therefore, not the best way to select the most
informative signals for personalisation. To solve this issue, we



propose a novel method to further reduce energy consumption
and latency by selecting a smaller set of training sensor signals
according to their predictive uncertainty. Our experiments
show that our approach can guarantee up to 42% energy
savings when training a model with early exits compared
to a standard state-of-the-art deep learning model. Further,
reducing the training sample size according to predictive
uncertainty resulted in energy savings of up to 79% with
accuracy increases of up to 4.23pp.

II. METHODS

Early exit ensembles are a collection of weight-sharing sub-
networks created by adding exit branches to any backbone
neural network architecture [15]. These sub-networks form an
implicit ensemble of models from which uncertainty can be
quantified. With only minor architectural modifications, any
multi-layered feed-forward neural network fθ(·) (composed of
B blocks/layers) can be converted into an implicit ensemble of
networks by adding early exit blocks. The early exit block is a
neural network (NN) gϕi(·) with parameters ϕi which takes as
input the intermediary output h(i) from the i-th block of the
backbone neural network fθ(·). As such, any NN can output a
set M containing up to B−1 outputs from early exits blocks,
in addition to the standard output from its final block

M = {pϕ1
(y|x), . . . , pϕB−1

(y|x), pθ(y|x)} (1)

where |M| = B denotes the number of exit blocks and,
consequently, the ensemble size, x is the input data and
y ∈ {1, . . . , C} the corresponding class labels.

We use two training paradigms to train an early exit en-
semble for on-device personalisation: end-to-end and exit-only
training. The end-to-end training represents a joint training
of the network as a whole, including the backbone and exit
blocks. In this procedure, the loss function is a composition
of the individual predictive losses of each exit:

Lgϕ =

B−1∑
i=1

LCE(y, gϕi(y|x)) (2)

L = LCE(y, fθ(y|x)) + Lgϕ (3)

where LCE(·, ·) is the cross-entropy loss function. The end-to-
end training provides a general model which would cater to a
large population of users, assuming that data is independently
and identically distributed across different users and devices.

The exit-only training procedure includes a frozen back-
bone (i.e. the weights will be unchanged) of the general
model while the exits are trained via Eq. 2. This training
provides a personalised model and is performed on-device,
preserving user data privacy. For exit-only training, we propose
an uncertainty-aware sample selection approach using the
uncertainty provided by the early exit ensemble of the general
(non-personalised) model. For each sample, the early exit
ensemble and prediction provide predictive entropy H(y|x).
This measures the uncertainty of the input personalisation
data according to the distribution on which the model was
initially trained, and is used to assess the informativeness of
the incoming sample. Formally,

H(y|x) = −
∑
y

p(y|x) log p(y|x). (4)

Our uncertainty-aware approach provides a principled way
to select the most informative samples for personalisation, and
concurrently adjusts the number of chosen samples consider-
ing the device’s energy requirements.

III. EXPERIMENTS

Model architecture. To evaluate our on-device personalisa-
tion technique, we consider two state-of-the-art architectures,
ResNet18 [16] and VGG16 [17] and openly available datasets.
These implementations included 18 blocks (69 layers) with
3,846,982 trainable parameters, and 14 blocks (53 layers) with
23,822,918 trainable parameters, respectively. 4 early exits
were inserted after layers 8, 24, 40 and 56 for ResNet18 and
layers 4, 11, 18 and 25 for VGG16 following a ’Semantic’
exit strategy and capacity factor γ = 0.2 [14]. Each exit block
included average pooling, a linear layer, a ReLU activation
layer, and another linear output layer to return the predictions.
Datasets. The Epileptic Seizure dataset [18] contains EEG
signals from 500 subjects recorded for 23.6 seconds. This
time series data is sampled into 4097 data points and then
split into 23 segments of 178 data points (i.e. 1 second).
Each of these 23 segments is labelled 1-5 according to the
state of the subject, with 1 corresponding to seizure activity, 2
corresponding to a recording from a tumour location, 3 from
a healthy location where the subject had a tumour elsewhere,
and then 4 and 5 for the subject’s eyes closed and open
respectively.

The Human Activity Recognition (HAR) [19] dataset con-
tains 6-axis IMU sensor signals from 30 participants recorded
for several seconds each. These signals were filtered and
sampled in fixed-width sliding windows of 2.56 sec and 50%
overlap, and then 561 time and frequency domain variables
were derived to form the training and testing vectors. Each
feature vector is labelled in {walking, walking upstairs, walk-
ing downstairs, sitting, standing or laying} (1-6).

These datasets were further split into an 80/10/10
train/validate/test ratio. The ResNet18 model was trained and
evaluated on both EEG and HAR datasets, while for the larger
VGG16 model, this was done on the latter. The personalised
datasets were created by separating the signal segments from
10% of the subjects from the rest of the dataset and excluding
them from the initial model training, then performing the
retraining with only these samples. This was chosen to make
the personalisation dataset encompass 10% of the available
data, which provided a reasonable balance between initial
training and personalisation.
Baselines. The baselines used for comparison were standard
ResNet18 and VGG16 models with no early exits, both with
and without additional personalisation training. Also, each
model with the early exits added was trained with all samples
in the personalisation training set and used as a baseline to
compare with those trained only with selected samples chosen
by predictive uncertainty.



Fig. 1: The F1 score from retraining each model and dataset
by the proportion of samples used for personalisation. EE
represents our approach with early exits; the others are the
baselines.

(a) HAR dataset. (b) EEG dataset.

Fig. 2: Sample proportions used for retraining when selecting
sensor signals by uncertainty.

Setup. The initial model training was performed on the Peta4-
Skylake cluster using PyTorch [20] for 800 epochs. The
personalised model was trained on an Nvidia Jetson TX2, with
Dual-Core NVIDIA Denver 2 64-Bit CPU Quad-Core ARM®
Cortex®-A57 MPCore, 8GB 128-bit LPDDR4 Memory 1866
MHx - 59.7 GB/s [21]. We run experiments using CPU and
GPU, and CPU-only to further restrict computational capacity
and closely replicate the resource constraints of most tiny
devices. The personalisation training was performed for 150
epochs, as this was empirically where a consistent level of
validation F1 and accuracy was reached across all models. The
models were trained with the Adam optimiser and a learning
rate of 10−3. The Jetson TX2 platform is equipped with a
power monitoring chip (TI INA226 [22]) which measures
voltage supply, and current draw, accessible by software - the
power and energy were computed from their logs. Energy is
calculated as E =

∑T
t=0 ItVt where It and Vt are current

and voltage measured at time t and T is the total training
time in seconds. The training time was measured using the
onboard clock. We perform 10 runs (with the whole test set)
and average the results.

After the initial method of model retraining, the process
was repeated with only a subset of training samples used,
selected by their predictive uncertainty measured by predictive
entropy. This was calculated before the retraining process by

passing each sample through the model and calculating its
predictive entropy, then subsequently reordering the samples
from highest to lowest. The subset was then taken for training,
with the top 21%, 43%, 65%, and 85% samples taken and
trained the same way as for the full training set.

IV. RESULTS

Classification accuracy. From inspecting Figure 1, it is clear
that the F1 score obtained by the personalised model is greater
than the non-personalised model for all models and signal
types used by an average of 4.19pp. This indicates that the
personalisation process improves the model performance inde-
pendent of the model structure. However, the accuracy attained
from retraining just the early exits is relatively similar to
retraining the entire backbone, with the models trained on the
EEG dataset performing slightly better. This was accentuated
in the VGG16 model, where the backbone complexity is
greater. Even so, the maximum difference across models was
3.27pp for a given sample size. The classification accuracy
varies with the number of samples used for personalisation,
and the general trend shows a drop-off in accuracy as this de-
creases. However, the point of maximum F1 varies depending
on the model and dataset - this occurs when using all samples
for the EEG-R EE and HAR-V models, 85% of samples for
the EEG-R, HAR-R EE and HAR-V EE models, and 65% for
the HAR-R model. The range in F1 scores by the number of
samples was relatively small for all setups, with the biggest
range of 4.54pp in the EEG-R and the lowest of 1.67pp in
HAR-V EE. The ranges were 2.66pp and 2.48pp for the EEG-
R EE and HAR-R EE models, respectively. Crucially, the F1
score with just 21% of the samples used for personalisation
was superior to that without personalisation in all cases, aside
from a slight decrease with HAR-V EE.
Sample proportions. When selecting samples based on uncer-
tainty, it is clear that while the initial retraining set samples are
evenly distributed, being increasingly selective by uncertainty
favours certain labels. Inspection of Figures 2a and 2b shows
that labels 2 (recording from tumour location) and 3 (recording
from healthy location) appear more on the EEG dataset. In
contrast, label 6 (laying) is nearly eliminated on the HAR
dataset. Additionally, this is a crucial finding because it
indicates that the personalised model can focus on critical
classes, which would increase trust in the prediction, such as
in the case of the EEG dataset. Instead, for the HAR dataset, it
can easily identify activities which are very different from the
others of the cohort such as laying vs walking/sitting, avoiding
retraining on non-informative samples. Finally, our approach
focuses the sample selection on those the model finds harder
to classify and gives more useful retraining information for
adapting to the user dataset.
Per-exit accuracy. Figures 3a, 3b and 3c show the F1 scores
attained by each individual exit after personalisation. As a
general trend, the later model exits suffer the most from
personalisation, with fewer samples for the EEG-R and HAR-
R. In contrast, the HAR-V shows a lower reduction in the
F1 score for all exits aside from a sharp decrease in the first.



(a) EEG-R (b) HAR-V (c) HAR-R

Fig. 3: The F1 score for each exit for varying retraining sample sizes.

Fig. 4: CPU only: The energy and time required for retraining each model and dataset by the proportion of samples used.

Fig. 5: CPU + GPU: The energy and time required for retraining each model and dataset by the proportion of samples used.

The poor performance of the first exit in the VGG16 model
likely reflects its relatively earlier placement compared to the
ResNet18 model and may explain why the overall F1 score
after personalisation is relatively lower on this than the others.
Overall, it would seem that the overall F1 score is determined
more by the cluster of high-performing exits than by a single
poor-performing exit. Inspecting the plots shows the last exit
of the backbone is not always the best-performing one, and
in fact performs quite poorly. We attribute this to the model
overthinking issue identified in previous literature [13]. Most
importantly, these findings show that choosing the samples
for personalisation assuming that the last exit is always more
accurate, like in previous works [5], is not valid.
Energy and latency. The training times for model personal-
isation by number of samples are shown in Figures 4 and 5.
The speedup from retraining only the early exits is significant
compared to the backbone, being 1.7×, 1.4×, and 1.4× faster

when all samples are used for EEG-R EE, HAR-R EE, and
HAR-V EE vs their baseline equivalents. Using CPU+GPU,
these are 1.5× for EEG-R EE and an accentuated 1.9× and
2.6× for HAR-R EE and HAR-V EE. Notably, exit-only
training saves 3h15’ for the HAR-V model on the CPU. The
speedup is approximately linear to the number of samples
- since the time per operation is unchanged for a given
dataset shape, the number of operations performed is the
primary determinant of retraining time. The latency reduction
across the models was 4.8×/3.05×, 4.0×/3.3× and 4.0×/4.8×
when using 21% of the samples versus all samples on the
CPU/CPU+GPU. This equates to savings of 3h18’ (4h9’ down
to 51.7’), 3h9’ (4h12’ to 63’), and 8h55’(11h53’ to 2h58’)
across the models on the CPU and up to 22.5’ (28.5’ down to
6’) on the CPU+GPU. The speedups for the HAR-V models
were greater than the HAR-R models using CPU+GPU but
approximately the same when using just the CPU.



The energy usage trend by the number of samples largely
mirrors that of training time since the power per operation
was approximately constant for each model and dataset. The
energy required per epoch was greater for the HAR dataset
and the VGG16 model, with the Jetson TX2 device operating
at a higher current. When all samples were used, exit-only
retraining required on average 42%, 29% and 28% less en-
ergy on CPU and 60%, 60% and 67% less on CPU+GPU.
Meanwhile, the savings ranged down to 79%, 75% and 75%
when only 21% of the samples were used on CPU, and this
was even greater using CPU+GPU with 80%, 80% and 82%
energy savings. In absolute terms, this is a significant reduction
from 88.4kJ to 18.3kJ (saving 70.1kJ), 98.5kJ to 24.2kJ (saving
74.3kJ) and 293kJ to 73.2kJ (saving 230kJ) on the CPU.
Similarly, the energy saved is greatest for the HAR-V model
when using the CPU+GPU. These savings come with a slight
reduction in the F1 score for HAR-R (1.5pp) and HAR-V
(1.1pp) and a 3.27pp improvement for the EEG-R. Using the
sample number with the highest F1 score for each model and
dataset saved 37kJ, 38kJ, and 109kJ respectively on the CPU.

V. CONCLUSION

This paper puts forward a new method for on-device neural
network model personalisation with early exits performed on
sensor signals. This method treats the early exits as an ensem-
ble of models trained with a joint loss function, with the effect
of improving model accuracy while minimising the time and
energy costs of training. Additionally proposed is a technique
to reduce the number of signal samples used for retraining by
selecting those with the highest predictive uncertainty to save
computation. The key findings were that personalisation with
early exits reduced energy cost by up to 42% versus a standard
neural network model. Additionally, analysis of the per-exit
accuracy showed that it is not valid to assume the last exit is
the most accurate and hence not the best strategy for selecting
samples for personalisation. Furthermore, selecting the number
of sensor signals for personalisation by predictive uncertainty
resulted in energy savings of up to 79% with an increase
in accuracy of 4.23pp in terms of F1 score, showing that
principled selection of samples effectively provides both im-
proved accuracy and efficiency. Finally, our approach provides
scope to improve the performance of wearable devices for
continuous monitoring of highly individualised human motion
and biosignals.
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