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Human activity recognition (HAR) models suffer significant performance degradation when faced with data heterogeneity
(device, users, environments) at test time. Current approaches to this problem using domain adaptation or transfer learning
attempt to improve performance in one specific target domain, often using data from said domain. Requiring access to data
from the target domain is limiting and cannot be generally assumed. In addition, there is often no single target domain, but
rather multiple ones arising from different sources of data heterogeneity. One way to achieve good performance in this setting
would be to gather data from all potential domains the model may encounter at deployment - this is generally infeasible.

This work presents the case for training models which are domain-agnostic, i.e., that generalise to unseen test domains. This
requires a new way to evaluate models; we discuss a regime called leave-datasets-out, and present a starting benchmark for
HAR using binary classification. Two state-of-the-art deep models in the literature are tested; they significantly under-perform
in unseen domains when compared to their performance on seen domains. It is shown that under this new evaluation regime,
a simple model with an appropriate inductive bias performs at least as well as two current deep models on the benchmark,
with a p-value of 5.75x10−4 and 0.13 when testing for a difference in mean accuracy, whilst being at least 10 times faster
to train. Additionally, we provide evidence that domain diversity under certain conditions improves performance on both
seen and unseen domains. We hope this work provides useful insights to further develop HAR models suitable for real world
deployment.
CCS Concepts: • Computing methodologies → Cross-validation; Neural networks; Supervised learning by classifica-
tion.
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1 INTRODUCTION
Human Activity Recognition (HAR) using accelerometer sensors have been researched since at least 2004 [3].
The models have moved from hand-crafted features [20, 23], to end-to-end deep models using convolutional and
long-short-term memory neural architectures [16, 17]. In contrast, the evaluation setup has not significantly
evolved. The models are often tested on the same dataset used for training [10, 12, 13, 19, 27].
This evaluation setup does not accurately reflect the performance of real deployments where training and

testing data may be significantly different. This issue has been observed in computer vision where performance
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degrades with variations in object pose [1], light [8] and weather [25]. In the HAR context, it is acknowledged in
literature that models suffer with changes in users [22], sensors [16] and environments [14]. Testing on the same
dataset assumes that these aspects of the training data remain constant during deployment.
Current approaches related to test-time heterogeneity in HAR uses transfer learning or domain adaptation

techniques. There have been studies for transferring between users, sensor location, sensor modalities and
datasets [5, 9, 16, 18, 28]. In general these approaches use a source dataset D𝑠 in combination with a small subset,
either labelled or unlabelled, from the target (test) domain D𝑡 for training. A common motivation for these
transfer studies is to reuse knowledge gained from a model trained on the source domain, due to limited access
to labelled data from the target domain.
The main assumption, inherent in these approaches, is that the researcher has access to data from the target

domain. This implies that models are domain specific; for each new target domain, retraining is required. However,
it is likely that models will face unseen domains during real deployment, as collecting data for all potential domains
is infeasible. Instead, we should strive for models to be domain-agnostic, i.e., perform well on seen domains but
also generalise to unseen domains, under appropriate conditions. Being able to measure this performance will
help researchers build better domain-agnostic models.

This work proposes using a different evaluation setup that may better reflect performance on real deployments,
an extension of the leave-one-subject-out regime to the dataset level - leave-datasets-out. An instance of this
evaluation method for the task of HAR is given as a binary classification task between two common activities
across three openly available HAR datasets. Using this benchmark it is shown that two current state-of-the-art
(SotA) deep models [7, 17] face significant performance degradation in unseen domains, even after correcting for
factors such as sensor location, sampling rate,e and measurement units.
We show that under this benchmark, a simple model using an appropriate inductive bias based on our

understanding of the data generating mechanism performs at least as well (p=5.75x10−4 and 0.13), compared to
SotA end-to-end deep learning models, whilst requiring significantly less resources to train. This unexpected
result raises questions about using deep end-to-end models as a one-size-fits-all solution in applications with
small labelled datasets such as HAR when unseen domain performance is key.

The work makes two further observations, one related to domain-agnostic models, and another about existing
transfer techniques. First, it is shown that achieving consistent gains across both seen and unseen domains,
across all tested models, is possible when training with data from multiple domains under similar conditions. This
observation can be useful not only in improving domain-agnostic performance, but also in our understanding of
negative transfer [26]. Additionally, a domain’s performance improves without complex transfer or adaptation
techniques when a small subset of data is available from said domain, across all tested models. This raises
questions about our understanding of existing transfer techniques: do the gains come from the method or from
the additional data?
Contributions. In summary, the contributions of this work are the following:

(1) A starting benchmark based on a simple binary classification which measures HAR models’ performance
on unseen domains corresponding to the leave-datasets-out evaluation regime. This serves as a better
proxy to performance in real deployment.

(2) Demonstrate that a model with a simple inductive bias can perform at least as well as current deep models
on this new benchmark. This raises further questions about our understanding of deep models in HAR.

(3) Two observations. 1. That performance on both seen and unseen domains improves with multiple domain
training under certain conditions (where the additional domain is not included in the seen or unseen
set). 2. That if the additional domain is already seen, as in the transfer learning setup, this improves the
performance without any complex transfer technique, raising questions about our understanding of gains
from these methods.
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2 DOMAIN-AGNOSTIC PERFORMANCE
Problem Setup. We are interested in the case where we have accelerometer data for a particular participant
x ∈ X and activity labels 𝑦 ∈ Y. We assume to have access to 𝑛 datasets D1,D2, ...D𝑛 each corresponding to the
same activities but in a different domain (corresponding to a different distribution). Each dataset consists of𝑚𝑘

pairs D𝑘 = {(x𝑖 , 𝑦𝑖 )𝑚𝑘

𝑖=1}, where each pair corresponds to data from participant 𝑖 , which in turn is assumed to be
independently and identically distributed samples from the corresponding domain. The feature space X and label
space Y are the same across all datasets. In our experiments, there are three datasets (𝑛 = 3) with 7, 10 and 9
participants respectively (𝑚1 = 7,𝑚2 = 10 and𝑚3 = 9).
In this work, we often refer to datasets used for training and testing in the following way. Let D𝒕𝒓 denote

the set of training dataset(s), and likewise D𝒕𝒆 for the testing dataset(s)1. For instance the 𝑛 datasets can be
partitioned into two groups, D𝒕𝒓 and D𝒕𝒆 . The goal is to only use D𝒕𝒓 to train a model that will perform well
on D𝒕𝒆 . i.e., we want to minimise Ex,𝑦∼D𝒕𝒆L(𝑀, (x, 𝑦)) whilst only having access to D𝒕𝒓 , where L is some loss
function,𝑀 is the trained model, and x, 𝑦 is the data.
Difference to domain adaptation. We note the difference between the setup just described to the typical

domain adaptation or transfer leaning setup where there is a designated sourceD𝑠 and targetD𝑡 domain, usually
corresponding to two different datasets. A model is trained on D𝑠 and then adapted to work on the target using a
subset of data from D𝑡 [5, 9, 16, 18, 28] i.e., D𝑡𝑟 = {D𝑠 } and D𝑡𝑒 = {D𝑡 }. The main difference here being that we
are not interested in the performance of any one particular domain D𝑡 , but rather the performance in domains
where the model has not seen any data (i.e., not D𝑡 or D𝑠 ), in addition to the domains where it has already seen
data. Related benchmarks have been studied in computer vision under domain generalisation [11]. We also note
that a similar setup has been studied previously [24], but not using end-to-end deep learning models, which have
become the dominant model paradigm today, and using only single dataset training.

Throughout the discussion in this paper, it is often useful to refer to a hypothesised data generating mechanism
for HAR data, this is shown in Figure 1. Let x denote the observed data for a particular domain, a node represents
a variable, or a group thereof, and an arrow from node A to be B signifies that A influences the value of 𝐵 in the
data.

User
CharacteristicsActivity

Sensor
Characteristics

Environment 
Characteristics

XLabel (Y)

Fig. 1. A possible data generating mechanism for HAR data.

2.1 Measuring domain-agnostic performance
In traditional learning, k-fold cross validation (CV) is often used to estimate the true error of the model (defined
as the loss over the unknown distribution the data was drawn from) by taking the average of the loss of each fold.
Denote the partitions 1, 2, ..., 𝑘 of a training dataset D as D1,D2, ...D3. The model in the 𝑖th fold is trained using
all partitions except D𝑖 , i.e., D𝒕𝒓 = {⋃

𝑗≠𝑖

D 𝑗 }, and tested on partition 𝑖 , D𝒕𝒆 = {D𝑖 }. Denote by𝑀 (D𝒕𝒓 ) a model

trained with datasets in D𝒕𝒓 . Let L(𝑀 (D𝒕𝒓 ),D𝒕𝒆)) denote the loss of a model trained on D𝒕𝒓 and tested on
D𝒕𝒆 for some loss function L. The overall error in k-fold CV of a model𝑀 is then approximated by:
1A bold font is used to denote a set of datasets whereas a normal font is used when referring to single datasets.
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Error(𝑀) = 1
𝑘

∑︁
𝑖∈1,...,𝑘

L(𝑀 (
⋃
𝑗≠𝑖

D 𝑗 ),D𝑖 )

using a single dataset D. In the context of timeseries analysis, especially in HAR, a variant called leave-one-
subject-out CV is often used. This is to avoid the same portion of data appearing in both the training and testing
sets, due to the way the timeseries from each participant is split into samples using overlapping windows.

Leave-datasets-out (LDO) cross-validation. In this work, we use a natural extension of this idea to measure
domain-agnostic performance, called leave-datasets-out CV. In the simplest setting, given𝑛 datasetsD1,D2, ...,D𝑛 ,
the domain-agnostic error is approximated by:

Error(𝑀) = 1
𝑛

∑︁
𝑖∈1,...,𝑛

∑︁
𝑗∈1,...,𝑛

L(𝑀 (D𝑖 ),D𝑗 ) (1)

where if 𝑖 = 𝑗 then leave-one-subject-out CV is used, and when 𝑖 ≠ 𝑗 the model is trained on D𝑖 and tested on
the full dataset D𝑗 . In a later section of this work we will consider the case where we train on multiple datasets
instead of a single 𝐷𝑖 . This captures the idea that we are interested in the performance of the model on the
collection of datasets which could have resulted from the same mechanism, such as the one shown previously.

A starter LDO benchmark for HAR. As there are many possible variations in the user, sensor and environ-
ment characteristics in the real-world [6], starting simple before moving on to more complex scenarios will help
us understand model failures and hence how to improve them. In this work we use three datasets with as many
similar characteristics in the generating mechanism as possible, and two activities which are common across all
datasets. This can tell us whether current models are able to deal with a smaller subset of heterogeneity in data.

In particular, we use three open HAR datasets which share the walking and stair climbing activities, where the
data was collected under controlled environments, and where the sensor was worn on the same body position.
This leaves heterogeneity in the user, which is expected in real-world deployments, and any other heterogeneity
in the sensors that are not related to its placement. If we are unable to perform well with these more restrictive
heterogeneity, then it is worthwhile to understand why before moving on to tackle more complex scenarios, such
as location independent models [5] and scenarios with several activities.

Datasets. There are three datasets, MHEALTH [2], PAMAP2 [21], and WHARF [4], which contain data from
sensors located on the right wrist of the participants. There are only two overlapping activities across all datasets:
walking, and ascending stairs.

Preprocessing. For each dataset, samples were filtered for the two common activities (walking, stairs), and
only for readings captured from a sensor on the right-wrist of the participant. Invalid values and anomalies were
removed. The time-series for each participant was normalised to a common sampling rate of 50Hz, amplitude
normalised, and values converted to a common unit (𝑚𝑠2). Any participants with corrupted data is discarded.
The subject-timeseries is then segmented into 5 second windows (250 samples at 50Hz) with an overlap of 2.5
seconds (125 samples at 50Hz).

Current model performance. We test two state-of-the-art deep neural network models from the literature.
One is attributed to [7], a convolutional model, which has shown to consistently outperform in a standardised
test [15]. Another is the DeepConvLSTM model which uses both convolutional and LSTM layers [17]. Since
current models in the literature are multiclass classifiers, i.e., they are able to distinguish between many different
activites, it is expected that they should perform well on a binary classification task.
The model was evaluated according to equation 1. The loss function used is the average binary classification

accuracy with a 0.5 threshold. The performance of the two SotA deep models are shown in the first two left violin
plots, labelled DeepConvLSTM and DeepConv, in Figure 2a. Each datapoint in the plot is the average accuracy of
training the model on dataset 𝑖 and testing the model on dataset 𝑗 . Given the three datasets used, there are a total
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of 9 combinations. If 𝑖 = 𝑗 then normal leave-one-subject-out CV is used. If 𝑖 ≠ 𝑗 then the full dataset 𝑗 is used for
testing and this is repeated 10 times.

3 IMPROVING DOMAIN-AGNOSTIC PERFORMANCE
Revisiting fundamentals. By considering the data generating mechanism (Figure 1) we can see that the observed
data can be influenced by a number of different factors other than the activity performed by the user. This raises
an important point: models can easily be fooled by confounding factors which may be predictive of the activity
label.

Let us take a concrete example. It may be the case that in one particular dataset, data collection for the walking
activity was performed only on the elderly, whereas in more strenuous activities, such as running, data was
collected on younger participants. This would suggest that a model would, in theory, be able learn to discriminate
the walking activity by only using user characteristics that are present in elderly participants. When using this
model on a different dataset where walking may also be performed by younger participants, the model would
face performance degradation.

The two simplest ways to reduce the likelihood that a model is fooled by confounding factors is to reduce the
size of the hypothesis class, and by incorporating the researcher’s knowledge about the problem in the form of
an inductive bias. In this particular case, based on our understanding of human activity, we know that motions
associated with an activity is performed at a relatively low frequency i.e., at most a couple of times per second.
We further know that we are not so interested in features that do not affect the general shape of the motion, such
as the amplitude, since the general shape is what determines the activity rather than the range in which they are
performed.
As the simplest implementation of this idea, the discrete fourier transform (DFT) power spectrum of low

frequencies was used as features through a multi-layer perceptron (MLP) network. Albeit its simplicity, it fulfils
the two criteria: reducing the hypothesis class, and incorporating an inductive bias.
Simple model LDO results. This simplified model was compared with the deep models using the LDO

benchmark; results are shown in the rightmost plot of Figure 2a, labelled DFT_MLP, and a comparison of (log)
training time is shown in Figure 2b, using commodity hardware on an Intel Core i7-8650. A two-sided statistical
test to detect whether the average performance of the DFT-MLP model is different to the DeepConvLSTM and
DeepConv model yields a p-value of 5.75x10−4 and 0.131 respectively. The difference in training time across all
models are statistically significant at a 0.01 threshold level.

(a) (b)

Fig. 2. (a) Average accuracy on the benchmark of each model. Each datapoint in the plot is the average accuracy of training the
model on dataset 𝑖 and testing the model on dataset 𝑗 - a total of 9 combinations. If 𝑖 = 𝑗 then normal leave-one-subject-out
CV is used. If 𝑖 ≠ 𝑗 then the full dataset 𝑗 is used for testing and this is repeated 10 times. (b) Training time for each model
on commodity hardware, note y-axis is a log scale.
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Usingmore than one domain. If our assumption that the domains are connected by the same data generating
mechanism is true, we should in theory improve domain-agnostic performance by training on more than one
domain. This section briefly investigates this idea.

(a) DeepConvLSTM (b) DeepConv (c) DFT-MLP

Fig. 3. Top: Overall performance on the unseen dataset based on training with one or two domains across all considered
models. Bottom: All models see a noticeable drop in validation loss (orange) on the original training domain D𝑡𝑟,1, when
a small sample of data from an additional domain D𝑡𝑟,2 is introduced. Training loss is shown in blue. The training and
validation loss is based only on data from D𝑡𝑟,1.

Setup. The models were trained and evaluated according to Eq. 1 as before. However, instead of using only
one training dataset D𝑖 , two were used, and we are interested only in the performance on the unseen dataset. i.e.,
D𝒕𝒓 = {D𝑡𝑟,1,D𝑡𝑟,2}. For the first training dataset 𝐷𝑡𝑟,1, the full dataset is used, then a small random sample of
128 windows is selected from three random participants in the second dataset 𝐷𝑡𝑟,2 and included into the training
data halfway through training time. Performance is then measured on the remaining (third) unseen dataset. The
reason for such a small sample of the second training domain is to see the effect of performance based on data
diversity rather than the effect of data quantity.

The results comparing single domain to two domain training is shown in the top portion of Figure 3. The left
violin in each plot shows average accuracy from training with a single domain, similar to the previous setup, but
where performance is shown only on the unseen dataset. The right violin shows average accuracy by training with
two domains, 𝐷𝑡𝑟,1 and 𝐷𝑡𝑟,2, and testing on the remaining unseen dataset. A similar statistical test is performed
across all models to test whether the average performance using one or two domains are different with p-values
of 0.139, 5.75x10−4 and 6.75x10−2 for DeepConvLstm, DeepConv and the DFT-MLP model respectively.

Additionally, it is interesting to note that when the small sample from the second domain (D𝑡𝑟,2) is introduced
we see a noticeable drop in validation loss in the original training domain, D𝑡𝑟,1. This is shown in the bottom
portion of Figure 3. This suggests that the additional data diversity provided by the second domain also increases
performance not only in unseen domains, but also in seen domains (excluding itself). We additionally observe
that performance in its own domain also improve (as expected), but without using any transfer technique.
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4 CONCLUSION
Limitations. The proposed benchmark is constrained under a number of dimensions. A more realistic version
of the task would be multiclass over as many datasets as possible. Few publicly available HAR datasets have
overlapping classes with the same sensor placement. This paper is nonetheless a start, as models which perform
well on multiclass should also do well in the simpler binary classification setting. In the future we hope that this
benchmark can be extended when more data is available to the community.

The aim of this work was to present the case for training models which are domain-agnostic i.e generalise to
unseen domains of the same activity. This will bring us closer to robust real-world deployment of HAR models.
To do so we have presented three main points.

First, we proposed using the leave-datasets-out cross-validation regime, which we argue is a better way to
measure domain-agnostic performance than current evaluation methods. We present a starting point of this in
the HAR context using a binary classification across three publicly open HAR datasets. We evaluate current
state-of-the-art deep models for HAR, and find that they face significant performance degradation when tested
against this new benchmark. We show that by using a simple inductive bias from our knowledge of the problem,
we can instead use a model that achieves similar, if not better performance than current deep models (p=5.75x10−4
and 0.131) and that is 10-100 times faster to train. Finally, we show that training with even a small amount of
data from an additional domain improves performance on unseen, seen (excluding the same domain), and in the
same domain without complex transfer or adaptation techniques, across all models considered.
These results suggest that end-to-end deep models may not always be a one-size-fits-all solution in HAR

applications where large-scale training data is hard to come by, when deployment is likely to be on resource
constrained devices, and where real deployed models face multiple sources of heterogeneity.
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