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ABSTRACT

Ensembles of deep learning models can be used for esti-
mating predictive uncertainty. Existing ensemble approaches,
however, introduce a high computational and memory cost
limiting their applicability to real-time biosignal applications
(e.g. ECG, EEQG). To address these issues, we propose early
exit ensembles (EEEs) for estimating predictive uncertainty
via an implicit ensemble of early exits. In particular, EEEs
are a collection of weight sharing sub-networks created by
adding exit branches to any backbone neural network archi-
tecture. Empirical evaluation of EEEs demonstrates strong
performance in accuracy and uncertainty metrics as well as
computation gain highlighting the benefit of combining mul-
tiple structurally diverse models that can be jointly trained.
Compared to state-of-the-art baselines (with an ensemble size
of 5), EEEs can improve uncertainty metrics up to 2x while
providing test-time speed-up and memory reduction of ap-
prox. 5x. Additionally, EEEs can improve accuracy up to
3.8 percentage points compared to single model baselines.

Index Terms— Uncertainty, Deep Learning, Early Exit

1. INTRODUCTION

Ensembles of deep learning models can improve predictive
performance by combining the output of multiple models [1,
2]. The majority of approaches, however, focus on accuracy
while neglecting predictive uncertainty. For biosignal classi-
fication, uncertainty quantification is critical since the input
distribution is often shifted from the training distribution due
to different hardware and/or data collection protocols [3]. In
such scenarios, a model with well-calibrated uncertainty can
indicate if a prediction should be trusted [4].

Recently, ensemble deep learning techniques have been
shown to provide reliable predictive uncertainty quantifica-
tion. These approaches can be broadly divided into implicit
vs. explicit ensembles. Monte Carlo dropout [5] creates an
implicit ensemble of networks by approximately sampling
a weight distribution during inference. On the other hand,
deep ensembles [6] and hyper-deep ensembles [7] are explicit
ensembles composed of models of the same architecture in-
dependently trained with different weight initialization and
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hyperparameters, respectively. These aforementioned tech-
niques, however, have limited use for real-time biosignal
tasks due to their computational and memory overhead. In
particular, Monte Carlo dropout requires multiple forward
passes to create an ensemble which translates into higher la-
tency and computational cost. On the other hand, for deep and
hyper-deep ensembles, not only does the memory footprint
scale linearly with the ensemble size, but also an increased
computational burden is incurred from loading and running
multiple models.

To address the computational and memory bottleneck of
the previous techniques for uncertainty quantification, we
propose early exit ensembles (EEEs) via a novel interpreta-
tion of early exit neural networks [8, 9]. In our approach,
EEEs form an implicit ensemble of models from which pre-
dictive uncertainty can be quantified. Specifically, EEEs are
a collection of weight sharing sub-networks which can be
created by adding exit branches to any backbone deep learn-
ing architecture. We demonstrate that EEEs are not only
easy-to-implement but also perform optimally in terms of
accuracy, uncertainty quantification, run-time, and memory
on multiple model-dataset combinations. Furthermore, we
focus our empirical analysis on the task of biosignal classifi-
cation as it remains a highly unexplored area in uncertainty
estimation literature to date. Our code is publicly available at
https://github.com/ajrcampbell/early-exit-ensembles.

2. METHODS

Consider a classification problem where x € R” denotes a
D-dimensional input and y € {1,...,C} a corresponding
discrete target taking one of C classes. We aim to learn a
neural network (NN) fy(-) that can model the predictive dis-
tribution pg(y|x) over ground truth labels, given model pa-
rameters 6. By definition, a NN consists of blocks of differen-
tial operations (e.g., convolution). We assume therefore fy(-)
can be decomposed into B blocks such that fy(x) = (f(5) o
FED o0 f0)(x) where (£ 0 fD)(x) = fo,(fo,(x))
denotes function composition for i # j and § = U2 6;. Let
h(® e RKixD: denote the intermediary output of the i-th
block having K; features of dimension D; < D such that
h® = f5 (hG-D)for1 <i < B—1,and h(® =x.



2.1. Early Exit Ensemble

We define an early exit block as a NN g, (-) which takes as
input the intermediary output h(*) from the i-th block of fy(-),
henceforth referred to as the backbone. We let each exit block
learn a predictive distribution py, (y|x) = o(ge, (h()) where
o(-) is the softmax transform. As such, any NN is able to out-
put a set M = {py, (yIx), ..., pos_, (ylx), po(y[x)} which
represents an EEE. The ensemble M contains up to B —1 dis-
tributions from early exits blocks, in addition to the standard
output from its final block. As such, ensemble size |[M| = B.
To train an EEE, we optimize a weighted sum of each
exits’ individual predictive loss. This procedure allows the
training of the whole ensemble jointly. More formally:

B-1

L=Lopy fo(ylx) + Y ailee(y, gs, (ylx))
i=1

where Log(-,-) is the cross-entropy loss function and «; €
[0, 1] is a weight hyperparameter corresponding to the relative
importance of each exit.

During inference, a single forward pass of a NN with early
exits produces an ensemble M of predictions. The overall
prediction from M can be computed as the mean of a cate-
gorical distribution obtained from averaging the predictions
from the individual exits:

B—-1
Do (y]%) ~ ﬁ(pe(y\x) + 3 p ).

Compared to a single model prediction, an ensemble provides
more information such as variance, entropy and disagreement
(as measured by Kullback-Leibler (KL) divergence), that can
be exploited for better-calibrated predictive probabilities dur-
ing both training and inference [10, 11].
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Fig. 1: Representation of an early exit ensemble.

2.2. Exit Block Architecture

Exits from earlier blocks inherit intermediary outputs with
weaker representational capacity, which negatively impacts
ensemble accuracy. To address this issue, we design a condi-
tional architecture for the 7-th exit block as follows:

; W oW s(h®) + 1) + by 7 >0
g@(h(,)):{ 2 p(Wi"s(h) + b”) + b

Wys(h) + by 7=0

where s(-) denotes global average pooling, p(-) is an activa-
tion function, ng) € RExK: Wg') € REXKy, W;(;') S

RE*K: and bl € RE, bY? bY) € RC are weights and bi-
ases of linear layers respectively. The hyperparameter v > 0
is a learning capacity factor used to increase the number of
features from K; to K, of the i-th intermediary output such
that K, = (y/T+7)B " for1 <i < B — 1 where Kp is the
number of features in the last block defined by the backbone.
Intuitively, when v > 0 the number of features in each exit
block is inversely proportional to the exit point i.e. earlier ex-
its use additional parameters to learn more complex relations
between features.

2.3. Exit Placement

In practice, the number of exit blocks is determined by the
backbone architecture as well as computational cost [12] and
quality of the provided uncertainty estimates [4]. Therefore
the ensemble size | M| is a hyperparameter bounded above by
B. As such, there are a combinatorial choice of exist points
and therefore ensemble arrangements. To limit the search
space, we introduce exit placement strategies in Table 1.

Strategy Exit after

Block-wise Every block.

Pareto Blocks closest to 20% and 80% of total FLOPs.
Computation ~ Blocks closest to {15, 30, 45, 60, 75, 90}% of total FLOPs.
Residual Residual blocks.

Last-k Last & blocks.

Semantic Last block grouped by number and size of feature maps.

Table 1: Exit placement strategies for any backbone architec-
ture. FLOPs: floating point operations.

For example, given a ResNet18 backbone (with blocks de-
fined as convolution, batch normalization, and activation), the
Semantic strategy places exit blocks after each of the last
blocks of kernel size and number features (3, 64), (3,128),
(3,256), and (3, 512) resulting in size | M| = 5.

2.4. Computational Cost

Table 2 compares computational cost of EEEs vs. an ensem-
ble of independent models and a single model (assuming the
same backbone). The only memory overhead introduced by
EEEs are the parameters from exit blocks ¢ = Ulfl‘*lqbi.
Since in general ¢ << 6 where § = UZ_60;, EEEs achieve

computational and memory gains due to weight sharing.

Ensemble Size FLOPs Compute
Single 0 F T
Independent 0% M| Fx|M| 7x|M|
Early exit 0+ ¢ F+F, T+ Ty

Table 2: Computational and memory cost. F': FLOPs. 7:
compute time. Fy and 74 are FLOPs (floating-point opera-
tions) and compute time for all exit blocks respectively.



3. EXPERIMENTS

Datasets & architectures. We evaluate our approach on the
task of biometric signal classification using three datasets:
ECG heart attack (ECG) [13], EEG epileptic seizure (EEG-
S) [14], and EEG artifacts (EEG-A) [15] where only eye-
movement artifacts are considered. All datasets are split
into 80%/10%/10% train/validation/test maintaining class
proportions. Each dataset is paired with a different architec-
ture: FCNet [16] for ECG, ResNetl18 [17] for EEG-S, and
VGG16 [18] for EEG-A. For ResNetl8 and VGGI16, con-
volutional layers are made 1-dimensional following previous
work on biosignal classification [19, 20].

Baselines. We compare EEEs (Early Exit) against its
backbone architecture (Backbone), Monte Carlo dropout
(MCDrop) [5], deep ensembles (Deep) [6] and depth ensem-
bles (Depth). Depth is introduced as an explicit ensemble
where each model ranges from shallow to deep based on the
same backbone architecture. Following findings on optimal
size for well-calibrated uncertainty [4], we set ensemble size
to 5 for all models. For fairness of comparison, depth is
determined by the placement of exit points from Early Exit.
Dropout layers in MCDrop are similarly placed at exit points.

Metrics. Performance is evaluated using class weighted
F1, negative log-likelihood (NLL), Brier score (BS), and ex-
pected calibration error (ECE) (see [4] for an overview). NLL
measures how likely it is to observe the test data given each
trained model, BS measures the accuracy of predicted proba-
bilities, and ECE measures model calibration as the expected
difference between accuracy and predicted confidence.

Hyperparameters. All models are trained using the
Adam optimizer [21] and an optimally tuned learning rate,
batch size, and epochs: FCNet (le~2, 200, 250), ResNet18
(1e3, 200, 200), VGG16 (1e~%, 200, 200). For MCDrop, the
optimal dropout rate is 0.2. All results for Early Exit are for a
loss with «; =1 as well as a learning capacity factor and exit
strategy optimally tuned as follows: FCNet (y=0.0, Block-
wise), ResNetl8 (v=0.2, Semantic), and VGG16 (v=0.5,
Semantic). To prevent overfitting, early-stopping is used with
validation accuracy and a patience of 5.

3.1. Classification and predictive uncertainty

Table 3 summarizes accuracy and uncertainty results. In
terms of accuracy (as measured by F1 score), Early Exit per-
forms best in two out of three datasets (ECG and EEG-A)
compared to the best baseline Deep. Across all backbone
architectures, Early Exit improves accuracy by up to 3.8 per-
centage points. These findings reflect the variance reducing
effect of averaging a set of diverse models with individu-
ally high variance and low bias [22] (see Section 3.4). With
regards to uncertainty, Early Exit outperforms all baselines
(as measured by NLL, ECE, and BS). The biggest gain is

'Running on a 2.7 GHz Intel Core i7 CPU.

F1(1) NLL (}) ECE (}) BS (})
FCNet 0.983 (010)  0.059 (.031)  0.009 (.005)  0.026 (.015)
-MCDrop  0.987(.002) 0.043(.019) 0.011(.004) 0.019 (.004)
- Depth 0.989 (.007)  0.036 (.008)  0.017 (007)  0.018 (.006)
- Deep 0.989 (.003)  0.045 (.020)  0.014 (.007)  0.018 (.005)
~Earlyexit  0.992(.005)  0.024 (.008)  0.007 (.001)  0.009 (.003)
ResNetl§  0.847 (.012) 0.432(022) 0.081(.007) 0.233(.018)
~MCDrop  0.844 (.007) 0.362(.012) 0.045(.005) 0.216 (.011)
- Depth 0.861 (011)  0.318 (.028)  0.028 (.003)  0.194 (.012)
- Deep 0.866 (.009)  0.316 (.024)  0.028 (.004)  0.189 (.011)
~Earlyexit  0.865(.002)  0.306 (.013)  0.027 (.006) 0.189 (.005)
VGG16 0.809 (011)  0.589 (.040)  0.109 (.020)  0.308 (.015)
~MCDrop  0.822(.011) 0.574(051) 0.093(.012) 0.279 (.014)
- Depth 0.821 (.023) 0438 (.018)  0.057 (009)  0.275 (.010)
- Deep 0.838 (.010)  0.400 (.004)  0.039 (.004)  0.239 (.007)
- Early exit  0.847 (.003)  0.385(.005) 0.033(.010) 0.236 (.003)

Table 3: Classification and uncertainty results. Entries are
mean and standard deviation over 3 random splits of test data.
Best results are indicated in bold.

MCDrop  Depth Deep  Early exit
Size (€3] 0.20 0.70 1.10 0.20
FCNet FLOPs () 0.30 0.19 0.30 0.06
Time (@] 6.57 4.90 6.65 1.93
Size (€3] 3.80 8.90 19.20 4.40
ResNet18  FLOPs () 0.33 0.18 0.33 0.07
Time ¢ 2110 11.50 21.40 4.20
Size ¢ 23.80 30.10  119.00  25.80
VGG16 FLOPs ({) 11.60 6.30 11.60 2.30
Time {5254 31.57 62.87 11.53

Table 4: Memory and efficiency results. Size: number of pa-
rameters (millions). FLOPs: number of floating point opera-
tions (Giga). Time: average inference time over test dataset
(milliseconds)!. Best/second best results are indicated by
bold/underline.

reflected in FCNet where Early Exit improves on uncer-
tainty metrics by up to 2x compared to baselines. Finally,
compared to the current state-of-the-art Deep, Early Exit im-
proves calibration as measured by ECE for ResNet18 (0.028
vs 0.027) and VGG16 (0.039 vs 0.033) representing a 3.8%
and 15.4% decrease, respectively. In general, this should
translate into Early Exit displaying greater/lesser uncertainty
under out/in-distribution data shifts (see Section 3.2).

3.2. Calibration on in-distribution shifts

Figure 2 displays the effect of in-distribution shifts on EEG-
S and EEG-A test data for ResNet18 and VGG16, respec-
tively. We apply two types of shifts: signal masking and
amplitude clipping. Signal masking represents missing EEG
signal caused by electrode movement or temporary malfunc-
tion. Signal clipping, instead, represents amplifier saturation
caused by excess voltage. For all models, accuracy decreases
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Fig. 2: In-distribution shifts applied to [0%, 20%, 40%, 60%, 80%)] of test data for ResNet18 (masking) and VGG16 (clipping).
A well-calibrated model shows higher F1 and lower Brier score across all shift percentages.

as each shift intensifies. However, Early Exit displays greater
robustness by maintaining a higher F1 score across all inten-
sities for both shift types compared to baselines. In terms of
the accuracy of predicted probabilities (as measured by BS),
Early Exit performs better on clipping for VGG16 while fol-
lowing a similar trend to Deep and Depth for ResNet18 up to
shift intensity of 40%.

3.3. Efficiency analysis

Table 4 summarizes memory and efficiency analysis for all
models. As expected, the memory footprint (as measured by
size) of Deep is the highest since it consists of 5 indepen-
dently trained models. The most memory efficient model is
MCDrop, however, the FLOPs required for uncertainty es-
timation is approximately 5x higher than Early Exit due to
sampling at inference time. Dealing with 5 models (Deep
and Depth) or performing 5 samples (MCDrop) translates into
higher inference time compared to Early Exit. Overall, Early
Exit presents the best trade-off between memory (max 16%
increase), inference time (approx. 5x less), and number of
FLOPs (approx. 5x less) since EEEs can produce all ensem-
ble members’ predictions in a single forward pass. Therefore,
EEE:s are better suited to a wider range of real-world applica-
tions in need of efficient uncertainty quantification.

3.4. Diversity analysis

In Figure 3a we visualize diversity computed as the KL di-
vergence between each ensemble member prediction and the
average ensemble prediction [23]. Given the comparable me-
dian diversity of Early Exit and Depth (approx. 0.024), it is
clear that varying network structure leads to higher predictive
diversity. Overall, we conclude that Early Exit is the best pre-
forming technique as it has a greater range of disagreement at
a much lower computational cost, since it can provide mul-
tiple predictions in a single forward pass. The heat maps of
predictive confidence in Figure 3b (4 samples from EEG-A)
further highlight the importance of ensemble diversity. Av-
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Fig. 3: Visualizing (a) diversity, and (b) predictive confidence
(Early Exit, 4 samples) for VGG16. Ground truth in green.

eraging the predicted probabilities of each member of Early
Exit results in a correct prediction (highlighted in green) even
though some individual members are wrong. This finding is
in line with previous work suggesting that a good performing
ensemble should be both accurate and diverse [22].

4. CONCLUSION

We propose early exit ensembles (EEEs), an efficient and
easy-to-implement implicit ensemble technique for uncer-
tainty quantification in deep learning biosignal classification
tasks. Our approach achieves remarkable performance im-
provements over previous state-of-the-art ensemble deep
learning techniques presenting the best trade-off among ac-
curacy, uncertainty quantification, run-time, and memory on
a wide variety of datasets and architectures. The strong per-
formance of EEEs highlights the importance of structural
diversity when building a well performing ensemble. We
believe that the simplicity of our framework, combined with
its strong transferability across architectures and datasets, po-
sitions it as a de facto baseline for future work on uncertainty
quantification in biosignal classification.
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