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Abstract—Hypertension, a major risk factor for cardiovascular dis-
eases, often goes undetected due to its asymptomatic nature. This study
explores a novel approach to detecting elevated blood pressure using
heart sounds, aiming to provide a non-invasive, potentially continuous
monitoring solution. We evaluated our approach on a new dataset
of 260 participants, employing patient-independent cross-validation to
ensure generalisability. Our methodology utilises a convolutional neural
network-based Hidden Semi-Markov Model for heart sound segmen-
tation, followed by extraction of hand-crafted amplitude, duration,
and frequency features. A random forest model was implemented for
the binary classification of hypertension, achieving a promising 70%
accuracy with 72% sensitivity. We conducted comprehensive analyses,
including auscultation location and feature importance evaluation, and
the investigation of the heart rate – blood pressure relationship. Our
findings demonstrate the feasibility of this approach, providing a robust
foundation for further research and development in this domain.

Index Terms—blood pressure, hypertension, heart sounds, machine
learning, signal processing.

I. INTRODUCTION

Cardiovascular diseases pose a significant global health challenge,
with hypertension (chronically high blood pressure) being one of the
most widespread conditions. A comprehensive study in 2019 revealed
an alarming increase in global hypertension prevalence, from 650
million to 1.28 billion over the past 30 years, with 580 million
unaware of their condition, likely due to its asymptomatic nature,
and 720 million not receiving necessary treatment [1].

Blood pressure (BP), a vital sign crucial for assessing cardio-
vascular health, measures the force exerted by blood on vessel
walls. It is expressed as systolic and diastolic pressure in millime-
tres of mercury (mmHg). Historically, BP measurements have been
confined to clinical settings, relying on devices such as mercury
sphygmomanometers, aneroid, and, over the past five decades, digital
monitors [2]. However, the landscape of BP measurement is evolving,
with digital BP monitors now readily available for home use, enabling
more frequent and convenient assessments. Despite this availability,
studies show that only about half of diagnosed hypertensive patients
engage in home BP monitoring [3], indicating that home BP device
usage remains limited.

While the shift towards home BP tracking represents significant
progress, there is an obvious need to increase the accessibility and
frequency of BP measurements further. Relying solely on clinical or
home observations can lead to irregular checks and potentially inac-
curate readings due to phenomena such as white coat syndrome [4].

Researchers have explored alternative approaches to BP monitoring
using common sensing technologies such as electrocardiography
(ECG) and photoplethysmography (PPG). Various methods have been
developed, ranging from deep learning architectures [5,6] to tradi-
tional machine learning [7,8] and multimodal fusion techniques [9-
12]. Most of these approaches incorporate heart rate or heart rate
variability as key features, despite known heart rate and blood
pressure correlations [13,14], potentially confounding their results.
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Among potential sensing modalities for BP monitoring, audio
signals remain underexplored, despite being both ubiquitous and
non-intrusive. By leveraging heart sound analysis, we aim to de-
velop a method that could potentially offer continuous, non-invasive
BP estimation. This approach could complement existing methods,
enhancing the portability and accessibility of BP monitoring to
potentially enable earlier detection and improve hypertension care.

BP is known to influence heart sounds, as elevated BP can lead
to changes in cardiac structure and function. These alterations may
manifest as increased intensity of heart sounds, particularly the
second heart sound (S2), which can become more pronounced or
split due to heightened pressure in the circulatory system [15].

The estimation of arterial BP from heart sounds has evolved from
early Fourier coefficient analyses to sophisticated machine learning
approaches. Early studies explored the relationship between BP and
heart sounds [15], while theoretical models provided insights into
valve vibration at different pressures [16]. These works demonstrated
that heart sounds indeed contain information about BP, opening the
possibility for more advanced techniques.

Recognising the potential of heart sounds as a non-invasive BP
indicator, researchers have begun to leverage machine learning to
extract and interpret this information. Castro et al. [17] employed fea-
tures from the S2 for BP prediction in paediatric patients, achieving
a promising mean absolute error of 6.08 mmHg, although the narrow
BP range captured in the dataset could limit the generalisability of
the approach. Peng et al. [18] applied support vector machines to
data from 32 young, healthy adults undergoing cold-pressor tests,
reporting mean errors below 5 mmHg. However, their approach
lacked patient independence in data splitting, with data from the
same patient explicitly appearing in both train and test sets. Kapur et
al. [19] used neural networks on data from critically ill children,
demonstrating correlation with intra-arterial measurements. Their
method involved discarding predictions that disagreed with cuff mea-
surements, which they termed “regularisation”. This approach, whilst
potentially improving apparent accuracy, may affect independent
model performance. More recently, Landaeta et al. [20] used not just
heart sounds but also ballistocardiogram data from 21 healthy adults
in their early 20s for BP prediction using random forests, achieving a
mean error of 3.3 mmHg for systolic BP. Also, they induced elevated
BP in participants by asking them to perform physical activity for two
minutes, but they did not analyse potential heart rate confounding.

Whilst these studies have made significant contributions, opportu-
nities remain for expanding data diversity to populations that would
benefit the most from BP monitoring, ensuring patient-independent
validation, and investigating the relationship between BP and heart
rate. Therefore, the contributions of this paper are as follows:

• We present a novel heart sound dataset which contains blood
pressure (BP) measurements;

• We propose segmentation-based hand-crafted features with a
random forest to predict high BP using heart sounds in pre-
viously unseen patients, achieving 70% accuracy and 72%
sensitivity on our high BP detection binary task;



• We conduct a comprehensive feature importance analysis and
evaluate prediction accuracy at various auscultation locations;

• We identify the apex as the best auscultation site for audio-based
high BP detection, potentially simplifying future screening;

• We study the relationship between BP and heart rate in our
dataset, with our analysis corroborating the model’s specificity
to BP, distinguishing our work from previous studies that may
not have accounted for the influence of heart rate on BP.

II. METHODOLOGY

A. Dataset description

Given that most existing heart sound datasets focus on murmur
detection, a new dataset was collected for this work to explore the
relationship between heart sounds and blood pressure.

The data were collected at the Digital Biomarkers Laboratory in
Leszek Giec Upper-Silesian Medical Centre of the Medical University
of Silesia in Katowice. The heart sounds were recorded using an
EKO stethoscope, following standard cardiac auscultation practice
by collecting sounds from four distinct locations on the chest,
corresponding to four heart valves: right upper sternal border in
the second intercostal space (aortic valve, RUSB), left upper sternal
border in the second intercostal space (pulmonary valve, LUSB), left
sternal border in the fourth intercostal space (tricuspid valve, LLSB),
and left midclavicular line in the fifth intercostal space (mitral valve,
APEX). These recordings were then exported to WAV format with a
4000 Hz sampling rate. BP was collected using a Philips IntelliVue
MX450 patient monitor with a built-in BP monitor with a cuff.

The data collection effort was approved by the Bioethics Commit-
tee of the Medical University of Silesia and reviewed by the Uni-
versity of Cambridge School of Computer Science and Technology
Ethics Committee to approve the secondary use of data.

This dataset comprises heart sounds from 264 participants (169
male, 95 female; age 67.8 ± 13.2 years, range 20–95 years), of whom
226 have a heart murmur. From these 264 participants, 260 with
recorded BP were divided into classes based on their systolic blood
pressure (sBP): 64 participants with sBP equal to or below 120 mmHg
formed the normotensive class, 61 with sBP equal to or above 140
mmHg were classified as high BP, and 135 with sBP between 120
and 140 mmHg formed the pre-hypertensive class. These values were
chosen based on guidelines for healthy and hypertensive BP ranges
from The European Society of Cardiology and European Society of
Hypertension [21].

B. Preprocessing

Our approach to BP detection from heart sounds utilises a
segmentation-based method. We opted for the convolutional neural

network (CNN)-based Hidden Semi-Markov Model (HSMM) ap-
proach developed by Renna, Oliveira, and Coimbra [22]. This method
uses a 1-dimensional CNN, applied to four different envelograms
extracted from the audio signal, then combined with an HSMM to
enforce a natural sequence of heart sounds to split them into the main
components (S1, systole, S2, diastole). Following segmentation, we
extracted three classes of features, guided by the following intuition:
• Amplitude-based features capture the strength and relative inten-

sity of different parts of the heart cycle, including peak amplitudes
of S1 and S2 and their ratio. We expect to see an effect on the
amplitude of S2 in patients due to increased pressure in the arteries.

• Duration-based features measure the timing of different parts of
the cardiac cycle, including durations of S1, S2, systole, diastole,
and various ratios between these components. We believe that
increased blood pressure might lead to longer systole as the heart
works harder to pump blood against higher resistance.

• Frequency-based features analyse the frequency characteristics of
heart sounds, including mean and standard deviation of frequencies
for S1 and S2. We hypothesise that increased tension in the aortic
valve caused by high blood pressure might lead to higher frequency
components in S2.

For each audio recording, we computed these parameters over the
entire duration. We then calculated ten statistical measures for each
parameter over the entire recording duration: mean, standard devi-
ation, median, interquartile range, minimum, maximum, skewness,
kurtosis, range (peak-to-peak amplitude), and coefficient of variation.
This resulted in a one-dimensional feature vector with 130 elements
for each recording.

C. Experimental design

Detecting high blood pressure from heart sounds of previously
unseen patients is a novel task in signal processing and machine
learning. Therefore, we aimed to assess the feasibility of this idea by
conducting the following experiments:
• Exp 1: High blood pressure detection

We used normotensive patients and those with high BP for a binary
classification task. We extracted heart sound segmentation-based
hand-crafted features and evaluated the performance of traditional
machine learning methods. We also analysed the effect of heart
sound auscultatory location on the performance of the highest-
scoring method.

• Exp 2: Feature importance analysis
We identified the most influential features for high BP prediction.

• Exp 3: Heart rate correlation study
We examined the correlation between heart rate and BP to ensure
our model detected elevated BP rather than varying heart rates.
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Fig. 1. Summary of the methodology used in this study for high systolic blood pressure prediction.



TABLE I
HIGH SBP DETECTION PER INDIVIDUAL RECORDING AND PREDICTIONS

AGGREGATED PER PATIENT (MEAN ± STANDARD DEVIATION).

Metric Per recording Per patient
Accuracy 0.629 ± 0.069 0.701 ± 0.079
Sensitivity 0.565 ± 0.010 0.723 ± 0.102
Specificity 0.701 ± 0.117 0.696 ± 0.226

• Exp 4: Borderline cases analysis
We assessed our algorithm’s performance on pre-hypertensive
class, who were not included in the normal or high BP classes.
The methodology summary is presented in Figure 1. All ex-

periments were performed on a patient-independent train/test split,
meaning that all data belonging to one patient appears exclusively
in the training or testing sets but not in both. We used five-fold
cross-validation, so most of the results are presented as mean and
standard deviation across the five folds. Finally, accuracy, sensitivity,
and specificity were used for evaluation.

III. RESULTS AND DISCUSSION

A. Exp 1: High blood pressure detection

We employed a segmentation-based approach using hand-crafted
features based on evidence from existing research indicating that
high blood pressure (BP) alters the second heart sound. Using these
extracted features, we trained several traditional machine learning
models: support vector machines with radial basis function (RBF) and
linear kernels, a decision tree, a random forest, k-nearest-neighbours
(k-NN), multilayer perceptron, and logistic regression.

For each patient, multiple predictions were obtained — one for
each audio sample corresponding to the four chest locations from
which sounds were collected. These predictions were then averaged
to get the final prediction per patient.

The random forest model performed best in high systolic BP (sBP)
detection. It was implemented using scikit-learn (v1.3.0), utilising 40
trees (n estimators=40) and a fixed random state (random state=3)
for reproducibility. All other hyperparameters were kept at their
default values. Table I presents the results before and after prediction
aggregation per patient.

To assess the predictive capability of each auscultation location,
we analysed the model’s performance separately for each site, using
predictions obtained from the five-fold cross-validation. It is worth
noting that the model was trained on data from all locations, as
training on individual locations would have reduced the size of the
already limited dataset by 75%. The results of this location-specific
analysis are presented in Table II.

Generally, we observed that aggregating the results from all four
locations yielded the highest accuracy and specificity, as seen in Ta-
ble I. However, for the individual locations, the apex (corresponding
to the mitral valve area) yielded the highest accuracy and sensitivity.
This may be attributed to the fact that the mitral valve is directly
affected by left ventricular pressure changes, which is closely related

TABLE II
HIGH SYSTOLIC BLOOD PRESSURE DETECTION PERFORMANCE ON EACH

DISTINCT AUSCULTATION LOCATION.

Location Accuracy Sensitivity Specificity
APEX 0.661 0.724 0.600
LLSB 0.642 0.603 0.677
LUSB 0.626 0.500 0.746
RUSB 0.587 0.414 0.746

TABLE III
ABLATION STUDY RESULTS FOR DIFFERENT FEATURE GROUPS.

Feature Set Accuracy Sensitivity Specificity
Amplitude 0.581 ± 0.101 0.643 ± 0.182 0.539 ± 0.110
Duration 0.548 ± 0.072 0.526 ± 0.143 0.584 ± 0.112
Frequency 0.491 ± 0.091 0.541 ± 0.192 0.456 ± 0.071
Amp + Dur 0.573 ± 0.112 0.622 ± 0.112 0.546 ± 0.243
Amp + Freq 0.589 ± 0.089 0.613 ± 0.197 0.582 ± 0.097
Dur + Freq 0.540 ± 0.060 0.523 ± 0.095 0.575 ± 0.210

to sBP. Moreover, sBP is associated with left ventricular mass and
global radial strain [23], which might cause audible changes.

Notably, the sensitivity of high sBP prediction from the apex alone
surpassed that of aggregating predictions from all four locations. This
finding suggests that for potential audio-based BP screening tools, the
apex may be the optimal, and perhaps sufficient, auscultation site.

B. Exp 2: Feature importance analysis

Given the novelty of sound-based high BP detection, understanding
the factors influencing the model’s classification decision is crucial.
Therefore, we conducted two feature importance analyses: a per-
feature-group ablation study and a mean decrease in impurity analysis
for individual feature importance evaluation.

Table III presents the results of the per-feature-group ablation
study. Among individual feature groups, amplitude features inde-
pendently achieved the best accuracy and sensitivity of 58% and
64%, respectively. For unique pairs of feature groups, amplitude
and frequency features achieved the best accuracy of 59%, while
amplitude and duration yielded the best sensitivity of 62%.

We also identified the most critical individual features using the
mean decrease in impurity method, a feature importance measure
intrinsic to the random forest.The results of this analysis are presented
in Table IV, with the most significant individual features being mean
and median systolic duration, and median S1 amplitude peak.

The ablation study showed that amplitude features alone yield the
highest performance among individual feature groups. However, the
mean decrease in impurity analysis revealed that duration features,
particularly systole and diastole duration statistics, are among the
most important individual features. This apparent discrepancy high-
lights the complex interplay between feature groups. Interestingly,
while the combination of amplitude and frequency features achieved
the best accuracy in the ablation study, frequency-based features did
not appear in the top 10 most important features according to the
mean decrease in impurity method. These results suggest that the
model’s performance relies on the collective contribution of many
features rather than any single feature or feature group.

TABLE IV
TEN MOST IMPORTANT FEATURES FOR HIGH BP PREDICTION ACCORDING

TO THE MEAN DECREASE IN IMPURITY METHOD.

Feature description Importance
Mean systolic duration 0.0378
Median systolic duration 0.0302
Median S1 amplitude peak 0.0204
Mean S1 amplitude peak 0.0167
Skewness of S2 amplitude peaks 0.0159
Mean diastolic duration 0.0153
Skewness of systolic durations 0.0148
Skewness of diastolic durations 0.0145
Median ratio of systole to diastole 0.0140
Median S2 amplitude peak 0.0140



Fig. 2. Correlation of average heart rate and systolic blood pressure, where
each point represents a patient.

C. Exp 3: Heart rate correlation study

Heart rate (HR) and BP are known to have a complex and context-
dependent correlation. HR and BP can be chronically elevated in a
stressed (i.e., unhealthy) cardiovascular system. However, when ob-
serving the same individual, especially if they are healthy, an elevated
HR (for example, during physical activity) can be associated with
decreased BP [24]. This important dynamic highlights a challenge in
adaptive BP prediction models that rely on historical data, as these
models may incorrectly interpret changes in HR as changes in BP,
potentially leading to false predictions.

Given the importance of understanding this relationship, we con-
ducted a correlation analysis between heart rate and BP. Our dataset
did not include HR ground truth, so we extracted the average HR
by finding the midpoint of each S1 segment and using consecutive
midpoints to calculate the instantaneous HR. The instantaneous heart
rates from the entire recording were then averaged to obtain the
average HR. Finally, we averaged heart rates from the four recordings
belonging to each patient to pair with the BP measurement.

The correlation between the systolic and diastolic BP and HR for
the patients included in this study can be seen in Figure 2. We
conducted a Pearson correlation analysis, which revealed a weak
negative correlation (r = -0.163) between HR and sBP, with a p-value
of 0.07. This p-value, above the conventional significance threshold
of 0.05, suggests that while there is a trend, it is not statistically
significant. Therefore, this finding confirms the validity of our model
in detecting BP rather than merely identifying HR variations.

D. Exp 4: Borderline cases analysis

Our final experiment addressed a critical question regarding our
binary classification approach: how does the model perform for

patients with systolic blood pressure (sBP) between 120 and 140
mmHg, a range considered borderline or pre-hypertensive?

To investigate this, we used the previously created five folds for
the cross-validation. While one of the folds was withheld as the
testing set and the remaining four were used for training, we also
obtained predictions for the mid-range patients. As a result, the audio
recordings belonging to the mid-range patients each received five
predictions. These predictions were first averaged for each recording,
and then a final prediction per patient was obtained by averaging
across the four recordings for each patient.

Figure 3 demonstrates the results of this experiment. Among
participants with normal BP, 20 out of 64 were incorrectly labelled
as hypertensive, and 17 out of 61 participants with high sBP were
incorrectly labelled as normotensive. In the mid-range group, 42%
were labelled as having normal BP, with the remaining participants
labelled as hypertensive.

It can be seen in Figure 3 that patients with lower systolic
and diastolic BPs were more likely to be labelled as normotensive
compared to those with higher BP in this pre-hypertensive range.
This shift in classification as BP increases could imply that the model
captured meaningful patterns related to blood pressure changes, even
within this borderline range.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we explored and demonstrated the feasibility of
detecting elevated blood pressure using a novel dataset of heart sound
recordings. We propose an approach which relies on CNN-based
HSMM segmentation for hand-crafted feature extraction, which are
used by a random forest model to predict high blood pressure. On this
binary task, the proposed method achieved promising results, yielding
70% accuracy and 72% sensitivity. We also demonstrated the absence
of a statistically significant correlation between heart rate and blood
pressure in our dataset.

Future work should explore regression models, which could pro-
vide more granular blood pressure estimates, which would be particu-
larly beneficial for borderline cases in the pre-hypertensive range. Ad-
ditionally, combining heart sounds with complementary modalities,
such as ECG or PPG, could enhance high blood pressure detection
by leveraging their unique advantages. Furthermore, expanding the
dataset will enable balanced gender representation, strengthening the
robustness of heart sound-based blood pressure detection.
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