
Modeling with Homophily Driven Heterogeneous Data in Gossip Learning

Abhirup Ghosh , Cecilia Mascolo
University of Cambridge, UK
{ag2187, cm542}@cam.ac.uk,

Abstract
Training deep learning models on data distributed
and local to edge devices such as mobile phones
is a prominent recent research direction. In a Gos-
sip Learning (GL) system, each participating de-
vice maintains a model trained on its local data and
iteratively aggregates it with the models from its
neighbours in a communication network. While the
fully distributed operation in GL comes with natu-
ral advantages over the centralized orchestration in
Federated Learning (FL), its convergence becomes
particularly slow when the data distribution is het-
erogeneous and aligns with the clustered structure
of the communication network. These character-
istics are pervasive across practical applications as
people with similar interests (thus producing simi-
lar data) tend to create communities.
This paper proposes a data-driven neighbor weight-
ing strategy for aggregating the models: this en-
ables faster diffusion of knowledge across the com-
munities in the network and leads to quicker con-
vergence. We augment the method to make it com-
putationally efficient and fair: the devices quickly
converge to the same model. We evaluate our
model on real and synthetic datasets that we gen-
erate using a novel generative model for commu-
nication networks with heterogeneous data. Our
exhaustive empirical evaluation verifies that our
proposed method attains a faster convergence rate
than the baselines. For example, the median test
accuracy for a decentralized bird image classi-
fier application reaches 81% with our proposed
method within 80 rounds, whereas the baseline
only reaches 46%.

1 Introduction
Smart end devices like phones and wearables collect mas-
sive amounts of data characterizing personal, environmen-
tal, and societal signals using sensors like camera, micro-
phone, accelerometer, etc. Learning patterns from such data
is at the heart of many socio-technological systems across
healthcare systems [Warnat-Herresthal et al., 2021], smart
homes [Aı̈vodji et al., 2019], and smart cities [Zheng et al.,

2022]. However, a traditional machine learning system needs
the data to be aggregated from all the devices: this imposes
high communication costs and compromise user privacy, es-
pecially when the server cannot be trusted.

To mitigate such issues, a recent stream of research has
proposed to keep the data local to the devices and itera-
tively aggregate the models learned from the data. The two
most popular settings in this regime are Federated Learning
(FL) [Kairouz et al., 2021; McMahan et al., 2017] and Gos-
sip Learning (GL) [Koloskova et al., 2020]. While the former
needs a central server to aggregate the models, the latter op-
erates in a completely distributed way.

A GL system works in rounds where at every round a de-
vice (also called node) aggregates (e.g., weighted average)
the model parameters it receives from its neighbors in a com-
munication network, updates the aggregated model using its
local data, and shares it with its neighbors. The majority of
the FL settings ignore the device-to-device direct communi-
cation opportunities and asks every device to connect to a sin-
gle server which makes the server a single point of failure and
highly costly to maintain. Due to its fully distributed opera-
tion, GL not only avoids these problems but also enjoys bet-
ter privacy as the models are only communicated to a limited
set of trusted neighbors instead of a potentially untrusted FL
server.

Although the fully distributed operations in GL yield the
above attractive characteristics, it introduces unique chal-
lenges due to inherent heterogeneity in the distribution of lo-
cal datasets and the topology of the communication network.
Below we discuss two major structures in such a communi-
cation network that are crucial for GL.

Communities, or groups of densely connected nodes, natu-
rally arise in communication networks [Onnela et al., 2007;
Pietilänen and Diot, 2012]. Nodes inside a community often
are strongly connected in terms of the amount of time spent
together or the level of interaction, etc. [Granovetter, 1973].
For example, family or close friendships form such tightly
coupled communities.

Homophily is defined as the tendency of similar agents
to connect to each other. It is one of the most basic
social processes observed across human and animal soci-
eties [Talaga and Nowak, 2019; McPherson et al., 2001;
Hristova et al., 2014]. For example, friends may have sim-



ilar photos in their phones as they may go out together. Ho-
mophily has long been studied in various fields including
complex networks [Hristova et al., 2014], graph neural net-
works [Veličković et al., 2017], and general machine learn-
ing [McAuley and Leskovec, 2012].

Community structure coupled with homophily gives rise to
a data distribution that remains consistent among intra-cluster
nodes but changes between clusters. For example, differ-
ent families in a neighborhood will have different vacation
photos, wildlife photographers from different countries pho-
tograph different geo-located species, etc.

Challenges. Such a homophily induced heterogeneity
makes the convergence of existing GL aggregation meth-
ods [Koloskova et al., 2020] extremely slow especially be-
cause the sparse inter-cluster connections hinder knowledge
diffusion across communities. Existing literature takes two
avenues to solve this issue: i) by optimizing the commu-
nication network topology [Vanhaesebrouck et al., 2017;
Lian et al., 2017] but in a cross-device setting, the network
topology is naturally produced and cannot be optimized, for
example, the friendship relations are not subject to computa-
tional optimization. ii) changing the way of aggregation [Vo-
gels et al., 2021] which increases memory requirement at
the nodes and thus is not suitable for our cross-device set-
tings. Further, the gradient based bias correction FL methods
developed to deal with heterogeneous data [Li et al., 2020;
Karimireddy et al., 2020] become meaningless in GL as the
gradients at different gossiping nodes are not aligned. We
discuss more detail of these challenges in Section 3.1.

Our Contributions. To the best of our knowledge, we are
the first to study the connection between the statistical data
heterogeneity and the community structure of the communi-
cation network in the context of GL. Here we propose sev-
eral important advancements toward making gossip learning
amenable to real-world applications. We summarize our con-
tributions as follows.

• We formally analyze why the most popular existing GL
aggregation method is inadequate for our purpose and
then propose a data-driven model aggregation strategy
for faster convergence. Our main insight is that when
aggregating the neighbors’ models at a node u, a neigh-
bor is more important if it has access to a different data
distribution than u. We approximate this using the dif-
ference in the softmax distributions that the models pro-
duce given the same validation sample.

• We make the proposed method fair in the sense that ev-
ery node reaches the same optimization level simultane-
ously. This is achieved by regularized local training pro-
hibiting local models to go further from the aggregation
state. As GL does not have a global synchronizing step
a quick global consensus is non-trivial. Further, compu-
tational efficiency is attained by caching the neighbour
importances saving their computation cost at each com-
munication round and reducing the size of the validation
set used in inferring the importance of a neighbor.

• To better understand the interplay between the commu-
nication network topology and heterogeneous data dis-

Algorithm 1: Gossip Learning

1: for Each round t in 1, . . . do
2: for (Each node i ∈ 1, . . . , n in parallel) do
3: Run nep epochs of minibatch gradient descend

with batch size B on M
(t)
i using loss function

L(M (t)
i , Di) to get M (t+1/2)

i

4: Send M (t+1/2)
i to all neighbors of i in G: Ngh(i)

5: M
(t+1)
i =WiiM

(t+1/2)
i +

∑
j∈Ngh(i)

WijM
(t+1/2)
j

6: end for
7: end for

tribution, we propose a generative model for the commu-
nication network. Conveniently, it has only two hyper-
parameters controlling the data heterogeneity and ho-
mophily. Thus it is simple to understand but capable
of generating a wide variety of datasets.

• We extensively test our method using synthetic and real-
world datasets. We have used real interaction networks
of students, the residence of a village, and a location
based contact network for a bird image classification
task. In all the experiments our method achieves faster
convergence than the baseline.

2 Gossip Learning
Let us start by briefly discussing the basic working principles
of GL. It (Algorithm 1) works in synchronous rounds. At the
beginning of each round, a node i runs nep epochs of mini-
batch gradient descent using its local dataset Di on its local
model Mi. One can choose a loss function suitable for the
application at hand, we consider the cross entropy, LCE(.)
for simplicity. It then sends the updated model to its neigh-
bors. Physically the communication can use Bluetooth, WiFi
direct, other peer to peer (P2P) communication technologies,
or end to end encrypted messages over the internet. Here,
we abstract such a medium and assume that the underlying
communication is reliable and accurate.

After receiving the models from the neighbors, each node
computes a weighted average (with weights Wij – weight of
Mj at node i) of the model parameters (Line 5).

Aggregation method. In all the prior works in GL, the neigh-
bor weighting incorporates simple topological measures in-
dependent of the data distribution, for example, putting equal
weights on all the neighbors. A popular method for aggre-
gation is to use Metropolis-Hastings weighting strategy (MH.
weighting) [Koloskova et al., 2020] where Wij = Wji =
min

{
1

degree(i)+1 ,
1

degree(j)+1

}
.

3 Setup and Problem Formulation
Here, we formalize the setup and state our assumptions, con-
straints, and formally analyze why the above aggregation
methods do not work.

Communication network. This paper focuses on cross-
device GL between smart end devices that are inherently mo-



bile and thus come in contact of different devices. To pre-
serve privacy we consider the GL devices to communicate
with a small set of trusted others. For simplicity, we extract
and operate on a static communication network, G = (V,E)
from the dynamic communication opportunities, for example,
considering that an edge exists when the communication fre-
quency is beyond a threshold.

Data distribution. Suppose, D denotes the aggregated data
in the system (although such aggregation never happens).
Each sample j is a tuple of feature and the target class,
(x(j), y(j)) and a dataset at node i is Di, further all nodes
have the same number of training samples.

This paper focuses on the data heterogeneity from the per-
spective of label skew across devices, i.e., local dataset Di of
a node i contains a subset of the classes or more generally a
unbalanced number of samples from different classes.

Objective. Here, each node wants to learn about all the
classes that exists in the system. In other words the test data
contains i.i.d. samples from D. As a node does not contain
enough samples from all the classes, it needs to collaborate
with others.

We aim to enable the nodes to reach high test accuracy
quickly. This is driven by the fact that a quicker convergence
will reduce the overall resource consumption. An extended
goal is to make the convergence speed similar across nodes.

3.1 Problem With Existing GL Aggregation
A machine learning model becomes the most accurate when
it is trained on the centralized data, i.e., local data from the
source devices are aggregated. In the following we show
that the existing gossip learning aggregation takes a different
parameter update direction compared to such a centralized
model and thus is sub-optimal.
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Figure 1: (a) Schematic graph used in Section 3.1. We show the
connections of the node U1. The graph has two clusters: GR (right-
blue) and GL (left-brown). (b) A special case of (a) with a single
bridge edge. Each node contains 100 samples from each noted class.

Let us consider a GL system as shown in Figure 1(a). For
simplicity, assume that every node is connected to d nodes
from its own cluster except, U1 which connects to ψd nodes
from GR and (1− ψ)d from GL for 0 < ψ < 1. Every node
inGL has classes {C3, C4} and every node inGR has classes
{C1, C2}. Every node contains uniformly randomly sampled
∆ samples of each class it has. For simplicity, we consider
the classes are overall balanced, thus nL ≈ nR where nL
and nR represent the number of nodes in GL and GR respec-

tively. However, note that the label distribution across nodes
is skewed.

Let us now analyze why existing gossip averaging scheme
will not work in this distribution. While the simplistic setting
is only for the theoretical understanding, the empirical studies
consider more complex topology, data distribution, and more
classes.

A typical neural network contains a feature extractor (fϕ :
Rdata dim → Rh) and a classifier (gθ : Rh → R4).
For simplicity, let us consider that the feature extractor is
frozen (e.g., using the weights from a model pre-trained on
a larger dataset) and gθ (one dense layer) is trained using
GL. In the following we shall analyze how a parameter vec-
tor corresponding to a class Ci denoted as θCi(t) changes
as it is trained for more batches (t). For a data sample,
xi the network outputs a softmax probability Pθ(xi, Ck) =

exp(θT
Ck

fϕ(xi))∑
j∈{1,···4} exp(θT

Cj
fϕ(xi))

, i.e., the probability of xi belonging

to a class Ck.
Now, let us investigate θC1

in the following. Sup-
pose, the network uses cross entropy error, LCE =∑

xi∈D,j∈{1···4} I(yi = Cj) logPθ(fϕ(xi), Cj), where I is
an identity function. Thus a full batch gradient decent will
have θC1

(t+1) = θC1
(t)− η ∂L

∂θC1
(t) , where η is the learning

rate and ∂L
∂θC1

(t) = −
∑

xi∈D,yi=C1
(1− Pθ(xi, C1))f(xi) +∑

xi∈D,yi ̸=C1
Pθ(xi, C1)f(xi) is the gradient at θC1(t).

Let us denote the
∑

xi∈D,yi=C1
(1 − Pθ(xi, C1))f(xi)

as Fpull(C1, |D|) and
∑

xi∈D,yi ̸=C1
Pθ(xi, C1)f(xi) as

Fpush(¬C1, |D|) as they pull and push the representation vec-
tor θC1

w.r.t. the embeddings of class C1 and others respec-
tively [Li and Zhan, 2021](¬C1 represents the set of classes
other than C1).

Further, we assume that the push and pull forces computed
at different devices remain within a multiplicative factor of
c > 1 to the expected force over the devices. For example,
for pull forces, 1

c ≤ Fpull(C1,∆)
E[Fpull(C1,∆)] ≤ c. This is inline with

the assumptions in a typical decentralized learning setup [Li
et al., 2019]. Moreover, assume that every device (and also
the centralized model) initializes its model using the same
weight vector, θ (say delivered along with the app).
Observation 3.1. When a model is trained on the data ac-
cumulated across all the devices then θC1 becomes following
after one full batch gradient step:

θC1
(0) +

η

c
z ≤ θC1

(1) ≤ θC1
(0) + ηc.z (1)

Where, z =
(
nRE[Fpull(C1,∆)] − nRE[Fpush(C2,∆)] −

nLE[Fpush(C3,∆)]− nLE[Fpush(C4,∆)]
)
.

Now, we shall analyze GL operation at U1, especially the
parameter θ(U1)

C1
(1).

Lemma 3.1. Given the data distribution and communication
network as described above, the model weight at U1 becomes
the following after one aggregation step using Metropolis-
Hastings weighting.

θC1
(0) +

η.d

c(d+ 1)
z ≤ θ

(U1)
C1

(1) ≤ θC1
(0) +

η.c.d

d+ 1
z (2)



Where z = ψ(E[Fpull(C1,∆] − E[Fpush(C2,∆)]) − (1 −
ψ)(E[Fpush(C3,∆] + E[Fpush(C4,∆)])

Proof. Let us only analyze the upper bound as the lower
bound will follow a similar reasoning. After 1 full batch gra-
dient decent, every device Ui ∈ GR will have θUi

C1
(1/2) ≤

θC1
(0) + ηcE[Fpull(C1,∆)] − ηcE[Fpush(C2,∆)]. Sim-

ilarly, any device j ∈ GL will have θ
Uj

C1
(1/2) ≤

θC1
(0) − cη

(
E[Fpull(C3,∆)] − ηE[Fpush(C4,∆)]

)
. Thus,

after aggregation at U1, it’ll have θU1

C1
(1) ≤ θC1 +

1
d+1

(
θU1

C1
(1/2) + ψ

∑
Ui∈GR∩Ngh(U1)

θUi

C1
(1/2) + (1 −

ψ)
∑

Uj∈GL∩Ngh(U1)
θ
Uj

C1
(1/2)

)
. The statement follows triv-

ially from this.

Discussions. Comparing the GL update in Equation 2 with
the centralized model (Equation 1) we can see that the update
vectors will have the same direction 1 when nR/(nR+nL) =
ψ. However, this contradicts with our homophily assumption;
according to which ψ should be close to 1. Further, given this
result, a node that is only connected to the nodes in the same
cluster (ψ = 1) naturally will have its update in a different
direction than the centralized update. These results are due
to the difference in the data distribution among neighbors and
globally across all nodes (which is likely to happen in reality).

Also note that when a node’s model reaches another node
it is reduced exponentially w.r.t. the distance, τ between the
two nodes. In the above setting, it will reduce by a factor of

1
(d+1)τ , simply due to multiple averaging steps along the path.
As a consequence, while considering multiple GL rounds, the
model parameters from distant nodes (e.g., ones in GL) has
limited effect.

It is possible to correct the direction in Lemma 3.1 to match
the centralized update in Observation 3.1 if ψ is known. How-
ever, knowing this (e.g., as part of system configuration) vi-
olets privacy and it becomes a complex measurement when
we consider multiple hops in the graph and multiple rounds
in GL. Our method in the following section is a way to ap-
proximate this quantity.

4 Algorithms
We will now propose our algorithm for GL aggregation. The
method follows Algorithm 1 and modify the Wii and Wij us-
ing a data-driven strategy. We first discuss the way to decide
Wij followed by how to choose Wii.

4.1 Softmax-Distribution-Based Weighting
Let us consider the set up in Figure 1(b). This graph has min-
imum diffusion opportunity (only one bridge edge) and max-
imal dispersion of the data distribution (no common class be-
tween clusters). Intuitively, following are the required char-
acteristics of a neighbor weighting scheme: i) the bridge edge
AE is the most important edge in this network as it con-
nects two clusters containing knowledge about different sets
of classes. ii) the node importance is asymmetric, for exam-
ple, A is important to D as it gives access to the other cluster.

1Two vectors v, u are parallel when ∃a such that v = au.

Algorithm 2: Softmax-distribution-based weighting at node i
with validataion set Qi and model Mi

1: Compute H(k)
i =M

(t)
i (q

(k)
i ) for all q(k)i ∈ Qi

2: Compute H(k)
j =M

(t)
j (q

(k)
i ) ∀q(k)i ∈ Qi, j ∈ Ngh(i)

3: for Each neighbor j ∈ Ngh(i) do
4: ∆ij = pairwise cosine distances between H(k)

i , H(k)
j

5: distij = Average(∆ij) over samples in Qi

6: end for
7: Wij = (1−Wii).

distαij∑
j∈Ngh(i)

distαij

However, D is not important to A as they both have access
to similar classes and A has other neighbours B and C with
similar classes as D.

Algorithm 2 summarizes the proposed method. Each node
i sets aside a set of validation examples, Qi from its lo-
cal data. Then upon receiveing the models from its neigh-
bors, it infers the softmax probability distribution for a val-
idation example q(k)i ∈ Qi using its own model H(k)

i =

M
(t)
i (q

(k)
i ) and as well as using the model from its neighbor

j: H(k)
j = M

(t)
j (q

(k)
i )∀j ∈ Ngh(i). Models trainined with

similar data distribution will produce similar softmax proba-
bilities whereas the softmax probabilities will differ when the
training distribution differs between the nodes. We compute
the mean of the cosine distances, distij , between each pair
H

(k)
i and H(k)

j over all validation samples in Qi. We then set
the neighbor weight as Wij ∝ (distij)

α.
The hyperparameter α is an amplification factor. When

α = 0, all the neighbours have equal importance and a larger
value of α can amplify the small differences between nodes.

4.2 Deciding Wii

We initialize Wii to 0.5 and reduce it every epoch using the
function: Wii = 0.5(log(t))−β , where t denotes the cumula-
tive number of local epochs till now. The hyper parameter β
controls the rate of decrease, for example if β = 0, then Wii

remains fixed at 0.5 and a larger value of β reduces Wii at a
faster rate.

Ideally, β should depend on the dataset and factors related
to training, however, we keep this out of the scope of the cur-
rent work.

4.3 Empirical Insights for Algorithm 2
Let us now empirically analyse the effect of Algorithm 2 on
the convergence rate using the dataset in Figure 1(b).

The convergence for Algorithm 2 is much faster than the
baseline strategy (Figure 2 (b)). The neighbor weights also
capture our intuitions (Figure 2(c) and results in technical
supplementary 2). The baseline [Koloskova et al., 2020] test
accuracy plateaus at the 50%, i.e., the nodes learn the classes
in the same cluster but the knowledge does not percolate
across clusters. Slight variations of this baseline show sim-
ilar pattern as shown in the supplementary.

2Technical supplementary and code: https://t.ly/xSnS

https://t.ly/xSnS
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Figure 2: (a) Algorithm 2 achieves much faster convergence than
the baseline. Here, α = 4 and β = 4, Validation set contains ran-
dom 10% samples from local data at each node. The shaded region
contains the test accuracy of all the nodes in the network and the
bold line is the median. (c) neighbor weights at A (one of the two
bridge nodes). They correctly capture the intuition of ‘important’
nodes.

5 Practicalities: Fairness and Efficiency
To make gossip learning practical, this section considers two
important factors: how to make the convergence speed similar
at different nodes and how to make the method more efficient.

5.1 Fairness of Node Accuracy
Unlike FL where there is a single global model parameter
state, gossiping nodes can have very different model param-
eters, especially if they are far apart in the communication
network. As a result, nodes will have different convergence
rates based on their local data and position in the network.
Here, we extend Algorithm 2 to make the model parameters
converge quicker across all the nodes and thus achieve similar
convergence rates. Many applications need this to make the
model quality fair across participants.

To achieve such fairness, node i regularizes its local train-
ing using the following loss function at epoch t

L = (1− λt)LCE(M
(t)
i , Di) + λt

∥∥∥M (t)
i −M

(t−1)
i

∥∥∥2
2

(3)

LCE denotes the cross entropy loss. The relative weighting
of the two loss terms is controlled by λt which changes as
λt =

(
1+exp (−t

T )
)
. Here, λt → 1/2 when T → ∞ and for

T → 0 we get λt → 1. The hyperparameter T controls the
growth rate of λt. Setting λt to a constant does not work as
at the initial stage of the optimization, a heavy regularization
is detrimental and a light regularization allows the models to
diverge at a later stage. Figure 3(a) empirically verifies the
strategy and shows that fairness is attained with our strategy.

5.2 Compute Efficiency
Algorithm 2 needs more computation time and resources than
the vanilla GL as at each round a node needs to run infer-
ences on |Qi| × (|Ngh(i)| + 1) samples. Here we consider
caching the weights (Wij) and recomputing them every P
rounds. Figure 3(b) shows that the node accuracies decrease
with increasing values of P , however, the reduction is grad-
ual and thus can be used to trade-off between the efficiency of
the method versus the convergence speed. Further, we show
in the appendix that with smaller |Qi| the accuracy degrades,
but still remains usable.
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Figure 3: All experiments here use Figure 1(b). (a) A lower T (32)
makes the regularization so strong from the beginning that none of
the nodes learns anything useful. With T = 64 all the nodes quickly
converge at the same model parameters and all of them achieve a
decent accuracy. (b) Here we have α = 4 and β = 4.

6 Generative Model for a Synthetic Dataset
To evaluate our proposed method along with real datasets,
here we create a simple generative framework for synthetic
datasets. While both social network datasets and machine
learning datasets are abundant in the literature, it is rare to
find their combination, especially with human interaction net-
works. Moreover, while modeling social network has been
studied extensively [Kempe, 2011], no existing model cap-
tures the heterogeneous distribution of data on the network.
This framework naturally produces communities in the net-
work and the data distribution aligns with the communities.

For a |C| class classification task, following the literature
in FL [Hsieh et al., 2020] here each node samples Z ∼
Dir( γ

|C| I
|C|), γ ∈ R. It then chooses Zi fraction of its lo-

cal dataset uniformly randomly from the i-th class. The non-
iidness is controlled by γ. A smaller γ produces more imbal-
anced distribution.

Following a popular generative social network model
called as Social Distance Attachment (SDA) [Boguná et al.,
2004; Talaga and Nowak, 2019] we connect a node pair i, j
with probability pij = 1

1+(dij/b)ξ
where dij is the distance in

the feature space, b is the characteristic distance, and ξ con-
trols the extent of homophily. We use a k-neare-t neighbor
based distance: dij = max(kij , kji), where the node i is the
kij th nearest neighbor of node j and j is the kjith neighbor
of i. We use such a distance as it has consistent scale across
any data distribution and number of classes (making b = 1).
However, it can be easily replaced by other distance metrics
such as Euclidean. We call it SDA for Heterogeneous data
(SDAH). We theoretically and empirically analyze this model
in detail in the technical supplementary.

7 Experiments
The gossip learning setup has two main components – the
data on the nodes and the communication network. Here the
Algorithm 2 is evaluated using four image datasets, one time
series dataset, two synthetic and three real-world communi-
cation networks. We distribute MNIST dataset on different
communication networks in Table 1 (except the bird image
contributor contacts). We use the network in Figure 1(b)
to test other datasets: Fashion MNIST [Xiao et al., 2017],



|V | |E|
Network in Figure 1(b) 8 13

Contacts of school students 64 127
Contacts of village residents 19 29

Contacts of bird image contributors 28 66
Synthetic data using SDAH 80 variable

Table 1: Summary of communication networks evaluated.

CIFAR-10 3, and UCI Human Activity Recognition (UCI-
HAR) [Anguita et al., 2013]. Following are the main results.
Details on experimental setups and datasets are in technical
supplementary.

• In all the evaluation settings Algorithm 2 achieves a
faster convergence than the baseline strategy.

• We build a location based communication network be-
tween contributors for a bird image classification task. It
verifies that our assumptions on data distribution hold in
the real world. Our method achieves faster convergence
in this dataset too.

• Algorithm 2 achieves slower convergence compared to
FedAvg but achieves better final accuracy numbers.

Impact of hyperparameters. Figure 4 shows that with dif-
ferent α and β convergence rates vary, but the final accuracies
remain similar. One needs to tune these hyperparameters to
get the best convergence rate. However, we leave this to ap-
plication developers.
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Figure 4: α and β are set to 1 when not varied. All experiments use
the setup in Figure 1(b). (a) With increasing α convergence speed
increases. (b) Higher β produces faster convergence.

Using public datasets. We use the communication network
in Figure 1(b) along with Fashion-MNIST (result in techni-
cal supplementary), Cifar-10, and UCI-HAR datasets. While
the former two datasets have 10 classes, UCI-HAR has 6 ac-
tivity classes. For the UCI-HAR dataset we put three ran-
dom classes in each cluster in Figure 1(b). CIFAR-10 is
distributed using the dirichlet distribution with γ = 1. Our
method achieves faster convergence across all three datasets
(Figure 5).

Using Real-world contact graphs. Here we distribute
MNIST on two real-world contact graphs: i) from primary

3https://pytorch.org/vision/stable/generated/torchvision.
datasets.CIFAR10.html
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Figure 5: Results for UCI-HAR, and CIFAR-10 distributed on the
synthetic communication network in Figure 1(b). All of them use
α = 1 and β = 1. The color scheme follows Figure 2(a).

school students [Génois and Barrat, 2018] considering that
the students from the same class will have access to the sim-
ilar class examples. ii) contact graph of residences of a vil-
lage [Ozella et al., 2021] considering that the members of the
same family have access to the similar classes. Our method
achieves faster convergence compared to baseline (Figure 6).
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Figure 6: Our method achieves faster convergence rate for both the
face to face communication network for the primary school students
(a) and of village residences (b). Both use α = 16 and β = 4. The
color scheme follows Figure 2(a).

Evaluating on SDAH graphs. We generate multiple datasets
using our SDAH model varying homophily (ξ) and hetero-
geneity (γ). We distribute MNIST images on the generated
graphs. Algorithm 2 achieves faster convergence than base-
line and follows natural trends (Figure 7).

Bird image classification. Here we build a dataset from iNat-
uralists 4. We choose to include 20 popular bird species from
four continents. We build the communication network for the
contributors using their photo locations – connect two nodes
if they have uploaded photos from the same state. Figure 8(a)
shows that there is no node pair that are far apart in the net-
work but have similar classes. This verifies that our assump-
tions on data distribution hold in practice. We use an Effi-
cientNet B0 [Tan and Le, 2019] model pretrained with Im-
agenet. We only train the last layer with a fully connected
layer and freeze the rest of the model. Algorithm 2 achieves
faster convergence than the baseline (Figure 8(b)).

Comparison With Federated Learning. In Figure 8(b), we
4https://www.inaturalist.org/

https://pytorch.org/vision/stable/generated/torchvision.datasets.CIFAR10.html
https://pytorch.org/vision/stable/generated/torchvision.datasets.CIFAR10.html
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Figure 7: (b) With increasing ξ the network contains more sparsely
connected communities and thus the knowledge percolation be-
comes more challenging. Here γ = 1 and b = 10. (c) With decreas-
ing γ the data becomes more heterogeneous and learning becomes
more challenging. Here ξ = 8 and b = 10. In all experiments here
α = 4, β = 4.
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Figure 8: (a) Comparison of shortest path distance versus the simi-
larity of the local class distribution (b) Our method converges faster
than the baseline. Here we use α = 16 and β = 4 and produces
slightly higher accuracy compared to FedAvg however the conver-
gence is slower than FL.

keep the local data distribution fixed as the above bird im-
age classification and compare with FedAvg [McMahan et al.,
2017]. The convergence in FL is faster as the central server
‘sees’ all the nodes at every round whereas the GL needs sev-
eral rounds to spread information across all nodes. We believe
the increase in the accuracy for GL stems from the effect of
class imbalance. A subsets of the classes are globally rare
(see technical appendix). While FL has known weakness in
learning rare classes [Wang et al., 2021], due to limited mix-
ing of models, GL learns them better.

8 Related Works
While decentralized convex optimization has long been stud-
ied [Tsitsiklis, 1984], only recently it has been applied for
machine learning [Koloskova et al., 2020; Taheri et al., 2020;
Lalitha et al., 2018; Lian et al., 2018]. It is shown that the
data heterogeneity reduces the convergence speed [Koloskova
et al., 2020]. Several recent papers have improved the dis-
tributed SGD method to address such problem [Tang et al.,
2018; Lin et al., 2021; Yuan et al., 2021]. However, none of
these papers consider the interplay between the communica-

tion network topology and the data distribution which is our
focus.

Further, it has been established that the topology is impor-
tant in GL [Neglia et al., 2020; Ying et al., 2021; Giaretta and
Girdzijauskas, 2019] and local connectivity features are more
useful than global spectral gap [Vogels et al., 2023]. How-
ever, unlike our goal here, none of these focuses learning
on heterogeneous data considering the community structure
present in the topology.

A few recent papers build an optimal communication net-
work to alleviate data heterogeneity [Bellet et al., 2021;
Bars et al., 2022; Onoszko et al., 2021]. However, in our
applications both the communication network and the data
distribution are naturally fixed, for example, the trust relation-
ships do not change based on optimization objective. [Vogels
et al., 2021] has addresses heterogeneity by building a span-
ning tree so that each node has the correct average model from
all nodes. However, each node needs to maintain a model cor-
responding to each of its neighbors which will be challenging
for resource constraint devices. Further, [Dandi et al., 2022]
proposes a solution that needs an all-reduce step which de-
feats the purpose of a fully distributed operation.

Data heterogeneity has been well studied in FL [Li et al.,
2020; Karimireddy et al., 2020]. However, as these meth-
ods regularize the local gradient updates they are unsuitable
for GL as gossiping nodes start a round at different states.
Further, the topology of the network makes the setting more
complex. Moreover, the alignment based model fusions in
FL [Wang et al., 2020] are orthogonal to our method and can
potentially be combined.

9 Conclusion
We have demonstrated that a softmax-distribution-based
neighbor weighting strategy can achieve a much faster con-
vergence speed for a variety of machine learning tasks and
communication networks. Unlike prior weighting strategies,
our method is data-driven and thus can identify the important
neighbors where the relevant influence traverse over multi-
ple hops. The method works independent of the topology and
testing its suitability in dynamic network settings can form an
interesting future research. We also have proposed a method
to generate synthetic data distribution over a communication
network and a novel bird classification dataset. Our paper
takes important steps toward making gossip learning useful in
practice and paves an interesting direction for future research.
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Kimmo Kaski, Albert-László Barabási, and János Kertész.
Analysis of a large-scale weighted network of one-to-one
human communication. New journal of physics, 9(6):179,
2007.

[Onoszko et al., 2021] Noa Onoszko, Gustav Karlsson, Olof
Mogren, and Edvin Listo Zec. Decentralized federated
learning of deep neural networks on non-iid data. arXiv
preprint arXiv:2107.08517, 2021.

[Ozella et al., 2021] Laura Ozella, Daniela Paolotti, Guil-
herme Lichand, Jorge P Rodrı́guez, Simon Haenni, John
Phuka, Onicio B Leal-Neto, and Ciro Cattuto. Using wear-
able proximity sensors to characterize social contact pat-
terns in a village of rural malawi. EPJ Data Science,
10(1):46, 2021.

[Pietilänen and Diot, 2012] Anna-Kaisa Pietilänen and
Christophe Diot. Dissemination in opportunistic social
networks: the role of temporal communities. In Pro-
ceedings of the thirteenth ACM international symposium
on Mobile Ad Hoc Networking and Computing, pages
165–174, 2012.

[Taheri et al., 2020] Hossein Taheri, Aryan Mokhtari,
Hamed Hassani, and Ramtin Pedarsani. Quantized
push-sum for gossip and decentralized optimization over
directed graphs. arXiv preprint arXiv:2002.09964, 2020.

[Talaga and Nowak, 2019] Szymon Talaga and Andrzej
Nowak. Homophily as a process generating social
networks: insights from social distance attachment model.
arXiv preprint arXiv:1907.07055, 2019.

[Tan and Le, 2019] Mingxing Tan and Quoc Le. Efficient-
net: Rethinking model scaling for convolutional neural
networks. In International conference on machine learn-
ing, pages 6105–6114. PMLR, 2019.

[Tang et al., 2018] Hanlin Tang, Xiangru Lian, Ming Yan,
Ce Zhang, and Ji Liu. D2: Decentralized training over de-
centralized data. In International Conference on Machine
Learning, pages 4848–4856. PMLR, 2018.

[Tsitsiklis, 1984] John Nikolas Tsitsiklis. Problems in de-
centralized decision making and computation. Technical
report, Massachusetts Inst of Tech Cambridge Lab for In-
formation and Decision Systems, 1984.

[Vanhaesebrouck et al., 2017] Paul Vanhaesebrouck,
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