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Abstract

While there has been recent success in audio-based COVID-
19 detection, challenges still exist in developing more reliable
and generalised models due to the limited amount of high qual-
ity labelled audio recordings. With a substantial amount of un-
labelled audio recordings available, exploring semi-supervised
learning (SSL) may benefit COVID-19 detection by incorpo-
rating this extra data. In this paper, we propose a SSL frame-
work which adjusted FixMatch, one of the most advanced SSL
approaches, to audio signals and explored its effectiveness in
COVID-19 detection. The proposed framework is validated
with a crowd-sourced audio database collected from our app,
and showed superior performance over supervised models with
a maximum of 7.2% relative improvement. Furthermore, we
demonstrated that the proposed framework significantly bene-
fits model development using imbalanced datasets, which is a
common challenge in clinical data. It can also improve model
generalisation. This potentially paves a new pathway of utilis-
ing unlabelled data effectively to build more accurate and reli-
able COVID-19 detection tools.

Index Terms: COVID-19 detection, audio, semi-supervised
learning, Fixmatch, VGGish

1. Introduction

The outbreak of COVID-19 in 2020 has caused considerable
socioeconomic impact and threatened human life. Policy re-
sponses, vaccine development, and effective test tools have
greatly reduced the spread and brought the pandemic under con-
trol. While the most commonly used test tools for COVID-19
detection such as polymerase chain reaction (PCR) tests [1, 2]
and lateral flow device antigen (LFD) tests [3] are effective, dig-
ital technologies that employ machine learning using different
biomarkers also demonstrated great potential for scalable, flex-
ible and fast detection.

Extensive attention has been paid to using audio biomark-
ers for COVID-19 detection, such as cough and speech, due to
its numerous advantages (e.g. flexibility in data collection and
convenience in a home monitoring context). A variety of stud-
ies have demonstrated its potential in detecting COVID-19 in-
fections using deep learning techniques [4, 5, 6, 7, 8]. However,
most of the work is validated in a relative small dataset [4, 8, 6],
which may struggle to generalise and cannot be employed for
unseen data. The extensive amount of annotated audio record-
ings required for reliable data analysis and model development
is generally infeasible, as it requires experts to label the data
with a huge labor force and may also get delayed by priori-
tising system development over data gathering. As it is easy
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to collect unlabelled audio recordings at a large scale, explor-
ing semi-supervised learning (SSL) for COVID-19 detection is
of great interest, combining the unlabelled audio recordings in
conjunction with a small amount of labelled data to improve the
model performance.

A variety of SSL schemes have been investigated across a
variety of different tasks, while the most commonly adopted al-
gorithms include pseudo-labelling [9], mean-teacher [10], Mix-
Match (MM) [11] and its variant ReMixMatch (RMM) [12].
However, they are either highly dependent on the reliability of
the supervised model, or suffer from high computational cost.
FixMatch (FMM) was recently proposed for image recogni-
tion tasks, and showed superior performance while significantly
simplifying existing SSL methods [13]. However, it has been
mainly investigated in the image domain, and not been well ex-
plored in audio-related tasks.

In this paper, we proposed a SSL framework which ex-
plores the potential of semi-supervised learning for audio based
COVID-19 detection tasks, with FixMatch adjusted to audio
signals. We compared the proposed approach with supervised
and other SSL approaches, and showed a 6.2% relative im-
provement in terms of ROC-AUC over the supervised model.
Furthermore, we demonstrated how our approach can bene-
fit COVID-19 detection in different sub-tasks, e.g. distin-
guishing symptomatic/asymptomatic positive users from symp-
tomatic/asymptomatic negative users. The results showed great
advantages of the proposed approach in dealing with imbal-
anced datasets, with a maximum relative improvement of 7.2%
further validating its potential in developing more accurate and
generalised detection tools.

2. Related work

Existing studies have shown the effectiveness of audio signals
for COVID-19 detection [4, 5, 6, 7, 8, 14]. Coughs are first
explored using deep learning techniques [7]. One of the stud-
ies investigated the dynamics of the glottal flow waveform dur-
ing speech production (e.g. phonemes) to identifty COVID-19,
given the evidence that infection affects the respiratory system
which in turn affects the speech [8]. Further, different sound
types including cough, breathing and speech were combined to
improve the detection performance [4, 5, 6]. Various machine
learning techniques have also been validated, ranging from tra-
ditional Support Vector Machines [6] to more advanced deep
learning approaches such as pre-trained VGGish [5] and ResNet
[4] models. However, most of these models were developed us-
ing a small dataset ranging from 19 participants [8] to 355 par-
ticipants [4], making it hard to generalise to participants unob-
served by the model. Furthermore, asymptomatic positive pa-
tients may not volunteer to get tested, thus, the dataset used for
model development may lack these samples. This makes it hard
or even impossible for the model to recognize asymptomatic
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Figure 1: An overview of the proposed SSL framework using FMM for COVID-19 detection. The model is trained using labelled
samples, and employed to weakly augmented unlabelled spectrograms to select reliable unlabelled samples. Their predictions are
converted to pseudo-labels for strongly augmented spectrograms. The final model is dynamically optimized using the loss combining

both labelled (11) and selected unlabelled (12) samples.

patients. However, their audio recordings can be available (no
associated test label) within a large amount of unlabelled audio
recordings. This provides a great portion of data with rich and
valuable information to improve performance.
Semi-supervised learning (SSL), combining unlabelled
data with labelled data, has attracted tremendous attention.
Pseudo-labelling is one of the most widely adopted techniques
[9], and serves as part of the pipeline for many advanced SSL
algorithms. Recent SSL approaches which employ consis-
tency regularization on unlabelled data show improved results
[10, 11, 12, 13, 15, 16]. This minimises discrepancies between
predictions for weakly and strongly deformed unlabelled sam-
ples, forcing the model to be versatile when faced with outliers
and benefiting model development. FixMatch (FMM), one such
algorithm that simply combines consistency regularisation and
pseudo-labelling, demonstrated superior performance.

3. Methods
3.1. FixMatch for COVID-19 detection

An overview of the model pipeline using FMM for COVID-
19 detection is shown in Figure 1. Labelled samples are first
used to develop the supervised model, which is then adopted
to gather the predictions for the weakly augmented unlabelled
samples. Those with the predicted probability above a thresh-
old for each class are selected as the confident samples. Their
predictions are served as the artificial labels for the correspond-
ing strongly augmented samples, which are combined with the
labelled dataset to further optimise the model.

3.1.1. Model pipeline

The supervised model f is developed and optimized using
cross-entropy loss L:
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where y!, and y!, represent the prediction and test label for the
nep, labelled sample. The model is also applied to weakly aug-
mented unlabelled spectrograms to obtain pseudo-labels y,;, as:
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where ¢, (-) represents the weak augmentation, and y,;, repre-
sents the predicted probabilities for the m. unlabelled sample.

To discard potentially incorrect pseudo-labels, only the unla-
belled samples with the predicted probability y,., of one class
larger than a threshold 7 are selected. The predictions of these
selected samples are converted to a one-hot pseudo label yr,
by binarilising y,,, using the larger probability (e.g. argmax).
They are then used as the artificial labels (i.e. assumed posi-
tive or negative test results in our task) for the corresponding
strongly augmented spectrograms.

The loss function for the selected unlabelled dataset is esti-
mated as:

m1=N
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where ¢, () represents the strong augmentation and M is the
number of selected unlabelled audio samples after weak aug-
mentation. The final loss computed over both the labelled and
unlabeled dataset is:

l=lL+al 4)

where « controls the relative weight of the loss for the unla-
belled data.

3.1.2. Data Augmentation

SpecAugment is used as the augmentation method, which
shows success in automatic speech recognition [17] and acous-
tic scene classification [18]. Time masking and frequency
masking are applied to the spectrogram. For each spectrogram
of size T' x F', time masking is first applied to a range of
consecutive time frames [t1,¢1 + At] by replacing these ele-
ments with 0, where ¢; and At are randomly selected from a
uniform distribution to introduce randomness. Similarly, fre-
quency masking is applied along the frequency dimension. To
produce the weakly and strongly augmented spectrograms, we
mask an equal or larger number of random bins in the strongly
augmented spectrograms than in the weakly augmented ones.

3.1.3. Training strategies and model structure

Two different training strategies are proposed, referred to as
static and dynamic training. Static training selects the unla-
belled samples using the supervised model f once, and include
these samples in the training data to further optimize the model.
The reliability of the selected unlabelled samples are highly de-
pendent on the accuracy of the supervised model, and the errors
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Figure 2: Model structure. Three different modalities are used,
and VGGish is used for feature extraction. These features from
different modalities are concatenated and processed by fully
connected layers for binary classification.

introduced in the selected unlabelled samples may propagate
and disrupt the model development.

The dynamic training scheme instead selects the unlabelled
samples dynamically at each iteration and combines them with
the labelled data. Specifically, it iterates through samples, to
select the confident unlabelled samples and combine them with
labelled samples. For each iteration, the selected samples will
be different as the model’s parameters are optimised. Through
experiments, we have observed more unlabelled samples are in-
cluded as the model’s confidence improves over time.

The model structure is shown in Figure 2. Three differ-
ent audio modalities are used: cough, breathing and speech. A
pre-trained VGGish network [19], optimized for acoustic event
detection, is used as the feature extractor. Two fully-connected
layers are employed as the classifier for COVID-19 detection.

3.2. Tasks

According to participants’ clinical symptoms, a series of binary
classification tasks are explored, to provide more insights into
how FMM aids in detecting different subgroups of patients.

» Task 1: Distinguish positive participants from negative
(healthy) participants, which is the general case and referred
as "Pos-Neg’.

* Task 2: Distinguish symptomatic positive participants who
reported at least one symptom from asymptomatic negative
participants. This is expected to be a simple task as the au-
dio sounds may show clear difference between the two sub-
groups. This task is referred as ‘sPos-aNeg’.

» Task 3: Distinguish symptomatic positive participants from
symptomatic negative participants, refereed as ‘sPos-sNeg’.

» Task 4: Distinguish asymptomatic positive participants from
asymptomatic negative participants, refereed as ‘aPos-aNeg’.

4. Experimental setup
4.1. Data

We have collected a crowdsourced audio data set for COVID-19
detection via a mobile app (https://www.covid-19-sounds.org),
which collects three types of audio recordings for each partic-
ipant (cough, breathing and speech), along with their demo-
graphics, medical history, symptoms, and COVID-19 test re-
sults. More details can be found in [20].

We selected a subset of 1000 participants with 1486 la-
belled samples (734 positive and 752 negative samples). We
divide the data into training, validation and test partitions with
70%, 10% and 20% respectively, with relatively balanced gen-

Table 1: System performance using supervised learning (SL)
and SSL of pseudo labelling (PL) and Fixmatch (FMM) for
COVID-19 detection. Both static * and dynamic * learning
schemes are reported. FMM® outperforms other systems.

System ROC-AUC Sensitivity Specificity
SL 0.65(0.59-0.71)  0.62(0.54-0.69)  0.56(0.49-0.64)
PL*® 0.65(0.58-0.70)  0.67(0.59-0.74)  0.51(0.43-0.58)
pL¢ 0.67(0.61-0.73)  0.80(0.73-0.86)  0.41(0.34-0.48)

FMM*®  0.67(0.61-0.73)  0.68(0.61-0.75)  0.54(0.46-0.62)

FMM¢  0.69(0.63-0.74)  0.65(0.58-0.73)  0.63(0.56-0.71)
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Figure 3: System performance with different percentages of la-
belled data within [100% 75% 50%] for SL model and FMM®.
FMM?® outperforms or shows comparable performance as SL
(ROC-AUC), and yields higher relative improvements or more
balanced sensitivity and specificity with less labelled data.

der, age and symptoms to avoid any bias. We have selected
2381 participants with 2778 unlabelled samples in total.

4.2. Settings

All the audio recordings were automatically checked using
YAMNet [19] to remove the unqualified ones (e.g. noisy back-
ground, etc.). Each recording was then resampled to 16 kHz,
converted to mono channel and normalised to make the maxi-
mum amplitude 1. Silent regions at the beginning and the end
of the recordings were removed. We adopted the same model
structure (Figure 2) as in [5] due to its comprehensive vali-
dations and strong performance using supervised learning for
COVID-19 detection task, but the data and the resources used
to train the model differ. Our model is trained using one GPU
in the high-performance computing clusters.

Two fully connected layers with 64 neurons were used as
the classifier. VGGish is fine-tuned jointly with the classifier,
with the initial learning rate set as 5e-5 for VGGish and le-4
for the classifier.It is decayed by 2% for every 1000 training
samples. The model is trained for 20 epochs with the Adam
optimiser. The final 5 epochs include the validation data to fur-
ther boost the model performance. We empirically chose 5%
time and frequency masking for the weakly augmented spectro-
grams, and optimised within the range of [5, 35] percent with a
step size of 10 for the strong augmentation strength. The un-
labelled loss weight o was set to 0.33 as an approximation to
the ratio of labelled and unlabelled data. The threshold 7 is
empirically chosen as 0.95. The code was implemented using
Tensorflow [21].

The model performance was evaluated using ROC-AUC,
Sensitivity and Specificity. ROC-AUC shows the overall ca-
pabality of the model in correctly classifying the positive and
negative participants. Sensitivity illustrates the model capabil-
ity in correctly identifying positive patients, while specificity
shows that in correctly identifying healthy participants. A 95%
Confidence Interval (CI) for the model performance is estimated
using bootstrap [22].



Table 2: System performance for SL and FMM® for Tasks 2-4. Number of samples for each task is included in parenthesis (training/test).
FMM? shows great advantages in balancing sensitivity and specificity.

Task System Accuracy ROC-AUC Sensitivity Specificity
R B O S e o S S
T s | S, QSOIIG 0B0S00T 00D TanRD0
T O | ik L) e DB onoeom

Table 3: System performance for SL and FMM® for Tasks 2-4. Number of samples for each task is included in parenthesis (training/test).

FMM® shows great advantages in balancing sensitivity and specificity.

ROC-AUC

Sensitivity

Specificity

0.80(0.74-0.86)
0.78(0.72-0.84)

0.55(0.45-0.65)
0.69(0.61-0.76)

0.83(0.77-0.89)
0.78(0.69-0.86)

0.62(0.55-0.69)
0.63(0.56-0.70)

0.73(0.66-0.80)
0.57(0.49-0.66)

0.41(0.32-0.50)
0.59(0.50-0.68)

Task | System Accuracy
™ SL 0.69(0.63-0.75)
FMM?  0.74(0.68-0.79)
T3 SL 0.57(0.51-0.63)
FMM?  0.58(0.52-0.64)
4 SL 0.55(0.47-0.65)
FMM?  0.54(0.45-0.63)

0.66(0.55-0.76)
0.60(0.47-0.71)

0.27(0.12-0.43)
0.43(0.26-0.61)

0.84(0.76-0.92)
0.72(0.62-0.81)

5. Results and discussion
5.1. Comparison with supervised model

The comparison of the proposed system to the supervised learn-
ing (SL) model and pseudo-labelling (PL) approach for Task 1
(Pos-Neg) is shown in Table 1. It can be observed that pseudo
labelling with either static or dynamic training could not benefit
COVID-19 detection, possibly due to the weakness in the super-
vised model which generates incorrect artificial labels. FMM?*
and FMM? show a 3.1% and 6.2% relative improvement of
ROC-AUC over the supervised model respectively. In addition,
FMM¢ leads to more balanced sensitivity and specificity, and
a significant higher specificity with a 12.5% relative improve-
ment, suggesting that FMM is able to select more reliable unla-
belled samples, benefiting the task.

5.2. Evaluation for different subtasks

The system performance for Tasks 2-4 (T2-T4) with SL and
FMM? are shown in Table 3. ROC-AUC can be misleading
as the number of samples in the positive and negative class for
each subtask differ. We additionally reported the balanced ac-
curacy, which is computed as the average of recall obtained on
each class and mitigates this problem. SL easily skews to one
of the classes for all three subtasks, either with a high sensi-
tivity and low specificity, or vice versa. This is likely due to
the imbalanced dataset. FMM® demonstrates superior perfor-
mance for T2-T3 in terms of accuracy, showing great advan-
tages in balancing sensitivity and specificity. This suggests that
the proposed approach is able to select reliable but unfamiliar
unlabelled samples to aid model development. For T4, though
FMM¢? shows comparable performance in terms of accuracy,
it still yields a decreased discrepancy between sensitivity and
specificity. The overall unsatisfying performance for T4 could
be attributed to the extreme scarce samples in the positive class.

5.3. Size of labelled training data

We further evaluated the model performance using FMM¢ with
different percentages of labelled data for Task 1 (a general task).
As shown in Figure 3, FMM¢ shows superior or comparable
performance with the SL model for different percentages of
labelled data ranging within [100, 75, 50]. A higher relative

improvement of 6.6% using 50% labelled data over a 6.2%
improvement using 100% labelled data is observed. Further,
FMM¢ achieves more balanced sensitivity and specificity over
SL using 75% labelled data. This evidence suggests that FMM¢
shows greater advantages when less labelled data is available.

5.4. Visualisation in latent space

The latent vectors from the last hidden layer were projected into
a 2-dimensional space using t-SNE [23] for both the SL and
FMM? for Task 1, as shown in Figure ??. SL yields a model
which can cluster and separate positive and negative samples ac-
curately for the training samples, but not for test samples, sug-
gesting overfitting possibly due to the limited training dataset
size. On the contrary, FMM® maps a few positive and negative
samples in the wrong cluster, but still well separates positive
and negative clusters. These few samples might not be wrongly
clustered, as the test labels are self-reported which might be
noisy and introduce a potential time lag (i.e. recovered but not
tested and continuously reported positive test result). The pos-
itive and negative samples in the test set are clustered better
using FMMY, indicating a better generalisation capability.

6. Conclusion

A semi-supervised learning framework (SSL) using adjusted
FixMatch is proposed for audio-based COVID-19 detection.
It is validated in a crowdsourced dataset and the superior
performance over supervised learning and commonly adopted
pseudo-labelling demonstrates its effectiveness. The improved
performance on different tasks further showed that the proposed
approach significantly benefits learning in imbalanced datasets,
which is common in clinical data. We showed the potential of
the proposed framework in developing a more accurate and gen-
eralised model incorporating the great source of unlabelled data.
Future work includes investigating more advanced augmenta-
tion methods for audio signals, and improved fusion strategies
of different modalities under SSL scheme.
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