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ABSTRACT
Time series forecasting, as one of the fundamental machine learn-
ing areas, has attracted tremendous attentions over recent years.
The solutions have evolved from statistical machine learning (ML)
methods to deep learning techniques. One emerging sub-field of
time series forecasting is individual disease progression forecasting,
e.g., predicting individuals’ disease development over a few days
(e.g., deteriorating trends, recovery speed) based on few past ob-
servations. Despite the promises in the existing ML techniques, a
variety of unique challenges emerge for disease progression fore-
casting, such as irregularly-sampled time series, data sparsity, and
individual heterogeneity in disease progression. To tackle these
challenges, we propose novel Conditional Neural Ordinary Differ-
ential Equations Processes (CNDPs), and validate it in a COVID-19
disease progression forecasting task using audio data. CNDPs allow
for irregularly-sampled time series modelling, enable accurate fore-
casting with sparse past observations, and achieve individual-level
progression forecasting. CNDPs show strong performance with an
Unweighted Average Recall (UAR) of 78.1%, outperforming a vari-
ety of commonly used Recurrent Neural Networks based models.
With the proposed label-enhancing mechanism (i.e., including the
initial health status as input) and the customised individual-level
loss, CNDPs further boost the performance reaching a UAR of 93.6%.
Additional analysis also reveals the model’s capability in tracking
individual-specific recovery trend, implying the potential usage of
the model for remote disease progression monitoring. In general,
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CNDPs pave new pathways for time series forecasting, and provide
considerable advantages for disease progression monitoring.
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1 INTRODUCTION
Time series forecasting is of particular interests in a diverse range
of applications, e.g., weather forecasting [34], COVID-19 upcoming
number of infection forecasting [32], etc. While traditional methods
focused on statistical machine learning techniques such as autore-
gressive (AR) [2], exponential smoothing [15] and state space and
structural models [12, 9, 18], recently, attention has been paid to
modern machine learning techniques [25], especially deep learning
such as Recurrent Neural Networks (RNNs) and its variants [46, 26,
38].
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One emerging sub-field of time series forecasting that attracted
tremendous attention is forecasting individuals’ disease progres-
sion, which can help doctors and physicians make better decisions
and reduce the burden on healthcare systems. Especially with the
outbreak of COVID-19, developing such a model to forecast pan-
demic progression has become pivotal. Despite the success of ex-
isting methods for time series forecasting, a multitude of unique
challenges emerged in disease progression monitoring.

Firstly, it is hard to obtain individuals’ health status (i.e., samples
or diagnosis results) with time regularity, leading to irregularly-
sampled time series which are difficult to model using traditional
methods such as AR models or RNNs. Secondly, individuals may
also not visit the clinics or provide their data often, resulting in
data sparsity. The lack of historical samples for forecasting presents
an additional challenge. Thirdly, individuals’ disease progression
varies greatly, therefore, models should be carefully designed to
address this heterogeneity.

To tackle these challenges, we propose novel Conditional Neural
Ordinary Differential Equations Processes (CNDPs) for time series
forecasting, and validate it in a COVID-19 disease progression
forecasting task. Here we focused on audio signals (e.g., cough,
speech, breathing) for COVID-19 progression forecasting, due to
its numerous advantages in flexible and scalable data collection
scheme, as well as extensive evidence of its potential for COVID-
19 detection (i.e., distinguishing positive and negative COVID-19
audio samples) [17, 3, 7, 45].

The proposed CNDPs are motivated by a recent approach of Neu-
ral Ordinary Differential Equations Processes (NDPs) [27]. NDPs
composed of the Ordinary Differential Equation (ODE) are capable
of modelling a continuous and dynamic process. Further, ODE can
deal with any irregularly-sampled time series, serving as a good fit
to model audio time series. However, NDPs are designed for single
time series forecasting, i.e., forecasting future 𝑦 (𝑡) via modelling
its past samples. This is less feasible when 𝑦 (𝑡) is hard or costly
to measure (e.g., COVID-19 PCR test result). Therefore, CNDPs
first introduce a conditional variable X(𝑡) which is closely asso-
ciated with 𝑦 (𝑡) but easy to measure and quantify. CNDPs model
the dynamics of X(𝑡) and use it implicitly to aid the forecasting
of 𝑦 (𝑡). Furthermore, CNDPs introduce two additional modelling
mechanisms to specifically tackle on disease progression forecast-
ing. One is a label-enhancing mechanism that includes the initial
infection status as an additional input to CNDPs, providing accurate
past infection information to aid the forecasting. The other is the
individual-level disease progression loss function that accounts for
the differences in individuals’ heterogeneity. The key contributions
of this work are summarised as follows:

• Novel CNDPs are proposed, which enable reliable modelling
of irregularly-sampled and sparse time series, for disease
progression forecasting.

• A validation of the proposed CNDPs using a COVID-19
sound data set, consisting of 212 participants and 3714 audio
samples. It outperforms a variety of RNNs-based models and
Transformers and yields the best performance, with a UAR
of 93.6%, a sensitivity of 90.6%, and a specificity of 96.7%.

• In-depth analysis further demonstrates that CNDPs are ef-
fective in a longer forecasting horizon and the individual-
specific recovery rate prediction, suggesting its potential in

the remote and long-term monitoring of individuals’ differ-
ent disease progression.

• To the best of authors’ knowledge, this is the first study in-
vestigating COVID-19 disease progression forecasting using
audio signals.

2 RELATEDWORK
2.1 Time Series Forecasting
Autoregressive (AR) models [2] and Recurrent Neural Networks
(RNNs) such as Gated Recurrent Units (GRUs) [4] are the two most
commonly adopted time series forecasting models. They have been
employed for a variety of tasks and showed strong performance,
including weather forecasting [33], COVID-19 infection cases fore-
casting [29], traffic flow forecasting [14, 47], etc. However, AR
models are linear models that cannot accommodate complex non-
linear dynamics, such as unknown disease progression processes,
and RNNs are discrete models that may not be optimal for con-
tinuous time series modelling, and also require massive data to
develop the model. Though different strategies for RNNs have been
proposed to process irregularly-sampled data, they manually over-
lay additional mechanisms such as input augmentation and time
delay factors instead of explicitly accommodating the irregularity
in the time series [43]. Moreover, RNNs are only good at short-term
forecasting with reliable predictions at a few time steps ahead but
do not perform well in long-range forecasting [47]. Transformers
have been one of the recent solutions for time series modelling,
but it requires a large amount of training data and computation
resources, less applicable for limited health data [48].

Recently, NODEs were proposed in [5, 31], describing a dynam-
ical system by an ordinary differential equation (ODE) with the
governing function parameterized by a neural network. It allows for
modelling of irregularly-sampled time series, and shows promises
in different applications [30, 42, 28, 20, 6, 1]. However, they also
require a fair amount of data to develop the model, which may fail
in modelling sparse time series commonly existing in clinical data.

A new family of stochastic processes, NDPs, has been proposed
in [27] to achieve reliable forecasting with just a few data points.
However, it has only been validated on rotating MNIST dataset, and
has not been investigated in real-world applications. Both NODEs
and NDPs mainly focus on modelling dynamics of a single time
series, and further lack the capability to deal with individual het-
erogeneity. The proposed CNDPs, instead, are able to model the
disease progression implicitly via audio sequence and can forecast
individuals’ disease progression accurately with limited informa-
tion.

2.2 Audio-based COVID-19 Detection
A number of studies have explored audio signals for COVID-19
detection and shown promise. Different sound types have been
explored [10, 22, 3], and a variety of deep learning techniques or
training strategies have also been analysed, such as ResNet [7],
self-supervised learning[45], etc. However, they are designed to
detect COVID-19 status given only the current test sample, which
ignores the long-term disease progression and is not applicable for
forecasting.
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A most recent study [8] models the temporal dynamics of past
and current audio sequences to aid COVID-19 detection. Although
both past and current audio information were explored in this
work, the target was still to infer the current COVID-19 infection
status, and it is not capable of multi-step forecasting for disease
progression ahead of time. Specifically, study [8] predicts a single
point estimation at a time, whereas our work deals with trajectory
forecasting, which is theoretically a more challenging and clinically
important task.

2.3 Disease Progression Modeling
Modeling and predicting the progression of diseases is of great im-
portance for healthcare as it enables early intervention and timely
personalised treatment [41]. Disease progression modeling is ba-
sically a special case in time series modeling. However, it is more
changeling than other problems regarding the health data sparsity
and irregularity issues, as discussed in Sec. 1. Some preliminary
efforts have been put into modelling chronic disease progression
like Alzheimer’s and Parkinson’s diseases from clinical images [24,
13, 21]. For example, Zhou et al. proposed a multi-task learning-
based framework to predict the dementia stage from a sequence of
brain image biomarkers. In [16], a recurrent neural network (RNN)
based method was deployed on magnetic resonance imaging (MRI)
biomarkers to predict dementia degrees at each time point. A recent
study [36] investigated NODEs for COVID-19 forecasting, but it
focuses on a different applications, e.g., forecasting future disease
caseload (infections deaths) at the population level.

Our study is different from those existing works in three aspects,
ranging from the application, task definition, and the technical as-
pects. Firstly, from the application perspective, our work focuses on
forecasting individuals’ disease progression at the user level, which
sets it apart from other studies that primarily examine future dis-
ease caseload or address different health issues. Secondly, from the
task perspective, our work involves forecasting individual disease
progression based on the user’s past audio samples, incorporating
two series of data. This differs from most forecasting problems that
typically involve a single time series. The use of audio as a new
data modality in health applications allows for more cost-effective
sensing through mobile devices, enabling the monitoring of disease
progression in out-of-hospital environments. Thirdly, from a tech-
nical perspective, existing research has predominantly explored
deterministic models such as conditional latent ODE, whereas our
work utilizes a stochastic process with our proposed conditional
NDPs. This approach proves advantageous in handling the chal-
lenges posed by health data sparsity and irregularity, outperforming
commonly used time series models like RNNs.

3 METHODS
3.1 Problem Statement
We aim to study the COVID-19 disease progression forecasting
using audio samples as illustrated in Figure 1. Specifically, it aims
to forecast the sequence of each individual’s COVID-19 status
𝑦𝑖 , 𝑖 ∈ [𝑡𝑛+1, 𝑡𝑁 ] simultaneously given only the past audio represen-
tations and the corresponding time {x𝑖 , 𝑡𝑖 }, 𝑖 ∈ [𝑡0, 𝑡𝑛], referred to
as CNDPs. We refer to the past longitudinal audio representations
within [𝑡0, 𝑡𝑛] as context vectors, and the future samples within
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Figure 1: Forecasting model pipeline. The model aims to
forecast individuals’ COVID-19 progression, e.g., predicting
individuals’ disease development over a few days (e.g., de-
teriorating trends, recovery speed) by modelling a few past
longitudinal audio samples. A high probability prediction
indicates positive, and low probability indicates negative
(healthy).

[𝑡𝑛+1, 𝑡𝑁 ] as target vectors. We mainly analyse the case where
the number of context vectors is limited, to validate the model
capability in forecasting with extremely limited information. It is
worth noting that COVID-19 is one of the potential applications,
but the proposed CNDPs can generalise to any disease progression
forecasting scenerios.

3.2 Proposed CNDPs
3.2.1 Overview. The overview of the proposed method is shown
in Figure 2a. It adopts a variational encoder-decoder structure.
CNDPs consist of three processing stages, namely, an encoder,
a latent ODE and a decoder. The encoder concatenates the past
audio representations x(𝑡) = [x𝑡0 , x𝑡1 , · · · , x𝑡𝑛 ] and the correspond-
ing time 𝑡 = [𝑡0, 𝑡1, · · · , 𝑡𝑛] as input {x𝑡𝑛 , 𝑡𝑛}, which adds an ad-
ditional time dimension to the features and can be denoted as
[[𝑥𝑡0 , 𝑡0], [𝑥𝑡1 , 𝑡1], · · · , [𝑥𝑡𝑛 , 𝑡𝑛]]. They are then mapped to a latent
representation z𝑡0 , which captures the global dynamics in the past
disease progression. The additional proposed label-enhancingmech-
anism (cf. Section 3.3) further includes the past labels, 𝑦 (𝑡) =

[𝑦𝑡0 , 𝑦𝑡1 , · · · , 𝑦𝑡𝑛 ], and use {x𝑡𝑛 , 𝑡𝑛, 𝑦𝑡𝑛 } as the input. Latent ODE fol-
lowing the encoder produces a trajectory z(𝑡) = [z𝑡0 , z𝑡1 , · · · , z𝑡𝑁 ]
for all desired time steps [𝑡0, 𝑡𝑁 ], 𝑡𝑁 ≥ 𝑡𝑛 , by solving an ODE initial
value problem with z𝑡0 served as the initial point. A decoder finally
maps the trajectory z(𝑡) to the disease progression𝑦 (𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑁 ].

A detailed model structure is given in Figure 2b. Features x(𝑡) are
first extracted from raw audio waveform by the network 𝜙 , serving
as the input to CDNPs. Each component in CDNPs is discussed in
the following sections.

3.2.2 Encoder. The encoder first transforms the context vectors
{x𝑖 , 𝑖}, 𝑖 ∈ [𝑡0, 𝑡𝑛] to a latent variable 𝑁 (𝜇, Σ) by sub-networks
𝑓1 to 𝑓5 (Figure 2b), and a latent vector z𝑡0 is randomly sampled
from this distribution and used for the following latent ODE. The
latent variable 𝑁 (𝜇, Σ) consists of two parts, with the first part
learning representations from the initial context vector at 𝑡0 =

0 denoted as 𝑁 (u0, Σ0) and the second part learning the global



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Dang et al.

𝐸𝑛𝑐𝑜𝑑𝑒𝑟Input 𝒙(𝑡)
Time 𝑡

𝐷𝑒𝑐𝑜𝑑𝑒𝑟 𝑦!! 𝑦!" 𝑦!# 𝑡

Output 𝑦(𝑡)

𝒛!!
𝒛!"

𝒛!#

𝒛!$ 𝑡

𝒛𝒕!
𝑂𝐷𝐸

⋰

𝒛𝒕#%𝟏

𝒛!#%'⋰⋰
𝒙!
𝒙"

𝒙#

Ti
m

e 
𝑡

Dim 𝑑
Labels 𝒚(𝑡)

𝑦!#%"
𝑦!#%'

𝑦!$

⋰

(a) Overview of CNDPs

Positive

𝑡! 𝑡" 𝑡#

𝑢!

Σ!

𝑢$

Σ$

Initial point 

Global

𝑧%!
Sampling 𝑓&'(

ODE

𝑡! 𝑡" 𝑡# 𝑡$ 𝑡%

𝑧!!

𝑧!"

𝑧!#

𝑧!$

𝑧!%
𝜇

Σ

Latent ODEEncoder Decoder

𝑓"

𝑓#
𝒔!

𝒓

𝑓)

𝑓*

𝑓+

𝑓'(,𝒙(𝑡)

𝑦(𝑡)

𝑡

𝜙

Time
𝑡! 𝑡" 𝑡# 𝑡) 𝑡*

Negative

(b) Detailed model structure

Figure 2: (a) Overview of CNDPs, consisting of an encoder, a latent ODE and a decoder. The encoder maps the input of audio
representations x(𝑡), corresponding time 𝑡 , and test results 𝑦 (𝑡) within [𝑡0, 𝑡𝑛] to an initial point z𝑡0 and evaluate a sequence
z(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑁 ] in the latent space using an ODE. The output 𝑦 (𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑁 ] is mapped from z(𝑡) through a decoder. Further, the
label-enhancing mechanism takes past label sequence 𝑦 (𝑡) = [𝑦𝑡0 , · · · , 𝑦𝑡𝑛 ] as an additional input ( the dashed line), providing
accurate past disease progression information to the model. (b) A detailed CNDPs model structure for disease progression
forecasting. 𝜙 represents feature extraction, and 𝑓∗ represents network structures in CNDPs. The output at each time step is
predicted as a Bernoulli distribution, representing the probability of positive test results. The time series within [𝑡0, 𝑡5] is an
example, but CNDPs can process any irregular-sampled time series.

information from the entire context vector sequence denoted as
𝑁 (u𝑔, Σ𝑔). Specifically, the first part 𝑁 (u0, Σ0) is computed as:

s0 = 𝑓1 ({x𝑡0 , 𝑡0}), 𝑡0 = 0
u0 = 𝑓2 (s0);Σ0 = 𝑓3 (s0)

(1)

where s0 is the intermedia representation at 𝑡0 = 0 learnt from the
concatenation of {x𝑡0 , 𝑡0}.𝑁 (u0, Σ0) is particularly learnt to enforce
a more accurate representation of z𝑡0 , providing important informa-
tion for individuals’ initial infection status, and highly determining
how the disease progression z(𝑡) is decoded using ODE.

The second part𝑁 (u𝑔, Σ𝑔) learns the representation of the global
information of the context vectors within [𝑡0, 𝑡𝑛] as:

r =
1

𝑛 + 1

𝑡𝑛∑︁
𝑖=𝑡0

𝑓1 ({x𝑖 , 𝑖}), 𝑖 ∈ [𝑡0, 𝑡𝑛]

u𝑔 = 𝑓4 (r);Σ𝑔 = 𝑓5 (r)
(2)

Similarly, r is the intermedia representation of global information,
averaged over all time steps. The final latent variable 𝑁 (𝜇, Σ) can
be viewed as a concatenation of 𝑁 (u0, Σ0) and 𝑁 (u𝑔, Σ𝑔), and a
sample z𝑡0 can be randomly selected as:

z𝑡0 ∼ 𝑁 (𝜇, Σ) = 𝑁 (
[
𝜇0
𝜇𝑔

]
,

[
Σ0, 0
0, Σ𝑔

]
) (3)

Different from NDPs, CNDPs learn 𝑁 (𝜇, Σ) and obtain z𝑡0 via
modelling conditional variable X(𝑡), i.e., audio sequence, instead

of directly modelling the target variable 𝑦 (𝑡). Our approach adopts
variational inference (VI) to sample z𝑡0 from the learnt posterior
distribution instead of using a deterministic variable, as VI generally
yields robustness to overfitting, particularly for small datasets as
in our case. Moreover, using such a stochastic process can quickly
adapt to new data points [27]. This allows for predicting future
values based on a limited number of past samples.

3.2.3 Latent ODEs. A latent ODE model describes a continuous
process by an ODE in the latent space as:

𝑑z(𝑡)
𝑑𝑡

= 𝑓𝑜𝑑𝑒 (z(𝑡), 𝑡 ;𝜃 ) (4)

where 𝑓𝑜𝑑𝑒 is the neural network used to approximate the governing
function in the ODEs, parameterised by the weights 𝜃 . Instead of
learning z(𝑡) directly, latent ODE learns the dynamics 𝑑z(𝑡 )

𝑑𝑡
that are

governed by an ODE. If the temporal dynamics of audio and disease
progression do not change significantly, this approach explicitly
learning the dynamics may be a simpler task, and can potentially
show powerful generalisation capabilities.

To obtain the sequence z(𝑡), it requires to solve an ODE initial
value problem as:

z𝑡0 , · · · , z𝑡𝑁 = 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒 (𝑓𝑜𝑑𝑒 , 𝜃, z𝑡0 , 𝑡0, · · · , 𝑡𝑁 ) (5)

A Runge-Kunta method is used to solve the ODE [11]. One of
the advantages of ODE manifests in the long-range forecasting,
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while most of the existing time series models show significant
deterioration after a short period forecasting.

3.2.4 Decoder. The decoder transforms the sequence z(𝑡) to test
labels 𝑦 (𝑡). The input to the decoder is a concatenation of latent
vectors and their corresponding time steps {z𝑖 , 𝑖}, 𝑖 ∈ [𝑡0, 𝑡𝑁 ]. The
decoder maps {z𝑖 , 𝑖} to a Bernoulli distribution 𝑝 (𝑦𝑖 = 1) at each
time step 𝑖 as:

𝑝𝑖 = 𝑝 (𝑦𝑖 = 1) = 𝑓𝑑𝑒𝑐 ( [z𝑖 , 𝑖]), 𝑖 ∈ [𝑡0, 𝑡𝑁 ] (6)

where 𝑦𝑖 = 1 represents positive and 𝑦𝑖 = 0 represents negative.
Further, the predicted probability 𝑝 (𝑦𝑖 = 1) at each time step can be
converted to a binary output of positive or negative, with 𝑝𝑖 ≥ 0.5
as positive and 𝑝𝑖 < 0.5 as negative.

3.3 Label-enhancing Mechanism
Additionally, a label-enhancing mechanism is proposed, by includ-
ing the past infection status as the input to CNDPs (shown with
dash line in Figure 2a), referred to as CNDP𝑦̂ . This is practical as
individuals generally know their past health conditions or infection
status. Specifically, the input to the encoder of CNDPs𝑦̂ is a concate-
nation of the past audio representations, the time and, additionally,
the past labels {x𝑖 , 𝑡𝑖 , 𝑦𝑖 }, 𝑖 ∈ [𝑡0, 𝑡𝑛]. The label-enhancing CNDPs𝑦̂
learn the underlying dynamics of the audio and labels simultane-
ously in a joint space, with the past infection status serving as an
accurate reference to aid the forecasting.

3.4 Individual-level Loss
The model is trained using an amortised variational inference pro-
cedure, which jointly optimises the feature extractor 𝜙 , the encoder,
the latent ODE, and the decoder. The typical loss in NDPs consists
of Cross Entropy (CE) and KL divergence (shown in Appendix E),
which mainly targets point estimation for classification problems
and ignores the temporal dynamics. Moreover, it is computed over
the entire dataset or batches, which does not consider individual
heterogeneity. To guarantee reliable forecasting for each individual,
we proposed a customized loss that considers the disease progres-
sion over time and also optimized for each individual, defined as:

L(𝜃,𝜙) = 1
𝐽

∑︁
𝑗

[−Γ𝑝𝑏 (𝑝
𝑗

𝜃
(𝑦T |z𝑡0 , 𝑡, 𝜃 ), 𝑦T)+

+ 𝐷𝐾𝐿 (𝑞 𝑗𝜙 (z𝑡0 |xC, 𝑡C, 𝑦C) | |𝑞
𝑗

𝜙
(z𝑡0 |xT, 𝑡T, 𝑦T))]

(7)

where 𝑗 represents each individual, and the final loss is an average
across all individuals 𝐽 . It consists of the negative point-biserial cor-
relation −Γ𝑝𝑏 (∗) and the KL divergence 𝐷𝐾𝐿 between the posterior
distributions. Specifically, Γ𝑝𝑏 (∗) computes the correlation between
the predicted probability 𝑝 𝑗

𝜃
(𝑦T |z𝑡0 , 𝑡, 𝜃 ) and the test labels 𝑦T. The

smaller the -Γ𝑝𝑏 (∗), the better the predicted disease progression
matching the test labels. KL divergence 𝐷𝐾𝐿 captures the differ-
ence between the posterior distribution 𝑞𝜙 (∗) learnt for the context
vectors ∗C and target vectors ∗T (cf. section 3.1), and 𝑞𝜙 (∗) is a
Gaussian distribution as commonly used in VI. In general, Γ𝑝𝑏 (∗)
enhances the learning of disease progression for each individual.

3.5 Learning and Inference
During the training phase, the model takes the entire audio se-
quence of each individual. Using entire sequence guarantees the
model to observe the complete disease progression process. Instead
of training the model to forecast future values given limited past
samples, the model is trained on interpolation tasks, where a sub-
set of the audio samples in the sequence are randomly selected
as context vectors and the entire sequence is used as the target
vectors, following conventional choices in [3] and [4]. This im-
proves the model’s understanding of overall dynamics. We only
use a small number of context vectors, as it can force the model to
forecast accurately using limited past information. During the test
phase, only the past samples are provided for forecasting purposes,
whereas only the initial audio sample and initial label (in the label-
enhancing setting) are provided and used to forecast future disease
progression.

4 EXPERIMENTAL SETTINGS
4.1 Data
The dataset was collected via our mobile app, released on multiple
platforms including Android, iOS and a webpage. The project and
data collection were approved by the Ethics Board of the Depart-
ment of Computer Science and Technology at the University of
Cambridge. Each participant was encouraged to record three differ-
ent sound types via smartphones built-in microphones, including
breathing, coughing, and speech, where each participant was asked
to read a short phrase displayed on the screen. The COVID-19 test
results were self-reported, chosen from a positive test result, a neg-
ative test result, as well as a separate option for users who had not
been tested. 212 participants were selected with balanced positive
and negative participants. Each participant reports 5 to 385 days of
samples, covering 3714 days in total.

Missing data occurs when users record their audio data irreg-
ularly. Specifically, the app collects users’ daily audio recordings
and their test results. However, users may not always remember to
record their audio every day, or users may occasionally record use-
less data which can introduce conflicts in the reported test results
when compared to data from other days. To ensure data integrity,
such recordings are manually removed from our dataset. These sce-
narios result in audio sequences with varying day intervals, giving
rise to irregular time series within our data.

Age and gender are relatively balanced between positive and
negative groups, with 110 female participants (55 positive and 55
negative), 90 male participants (49 positive and 41 negative), and
12 unknown. There are 142 participants aged between 30-59 (75
positive and 67 negative). The median reported duration of the 212
participants is of 35 days, and the median number of samples is 9.
This time duration is able to cover the period of disease progression,
and aligns with the reported disease progression duration [40, 44].
More details of data, preprocessing and feature extraction can be
found in Appendix A.

4.2 Data Processing
Audio recordings were first resampled to 16kHz and converted to
mono channel. Silence periods were removed at the beginning and
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the end of the recording. Normalisation was performed for the data
to have a maximum amplitude of 1. Data augmentation was used to
increase the number of samples, where Gaussian noise was added
to the audio recording. The data was split into training, validation,
and test partitions with 70%, 10% and 20% balanced positive and
negative participants respectively, as well as the relatively balanced
gender and age.

4.2.1 Data augmentation. As negative participants generally con-
tribute more samples than positive participants, and positive par-
ticipants report both positive and negative samples, this leads to
the number of negative samples being significantly larger than that
of positive samples. In order to relatively balance the number of
positive and negative samples, noise augmentation is carried out
three times for positive participants, but only one time for negative
participants, resulting in 6862 samples in total. This can potentially
balance the positive and negative classes as well as increase the
data size for model developments.

4.2.2 Feature extraction. Transfer learning is applied for feature
extraction, where a pre-trained network of VGGish [19] is used, as
it is trained for audio event detection and can learn good acoustic
feature representations. This can potentially help capture better
audio representation via transfer learning. Three modalities includ-
ing breathing, cough, and speech recordings were adopted. For
each modality, spectrogram for each audio recording was first com-
puted and passed to the VGGish to learn a 128-dimension feature
embedding. The embeddings converted by VGGish from the three
modalities were then concatenated to form a multi-modal input
vector, leading to a final 384-dimensional feature embedding x(𝑡)
at each time step.

4.3 Baselines
We compared our proposed model to state-of-the-art systems for
time series forecasting. To understand the impact of each com-
ponent of the CNDPs, we compared a range of different models.
First, without the label-enhancing mechanism, six systems were
analysed:

• RNN Δ𝑡1: a classic RNN based autoregressive model for one-
step-ahead forecasting, i.e., forecasting 𝑦𝑡𝑛+1 given input as
[x𝑡0 , x𝑡1 , · · · , x𝑡𝑛 ]. The time difference between consecutive
days of audio recordings Δ𝑡 is used as an additional input to
model irregular-sampled time series.

• RNNΔ𝑡𝑎𝑙𝑙 : a similar structure as RNNΔ𝑡1, but formulti-step-
ahead forecasting, i.e., forecasting 𝑦 (𝑡) = [𝑦𝑡𝑛+1 , · · · , 𝑦𝑡𝑁 ]
given [x𝑡0 , x𝑡1 , · · · , x𝑡𝑛 ].

• RNN-VAE: an RNN based encoder-decoder structure [31]
for multi-step-ahead forecasting. The past longitudinal audio
sample [x1, x2, · · · , x𝑛] is used as the context vector to fore-
cast the future COVID-19 test labels 𝑦 (𝑡) = [𝑦𝑛+1, · · · , 𝑦𝑁 ].

• Transformer: a Transformer structure [39] with variations
in decoder, where 2 Transformer encoder layers are used
instead of the default 6, as our dataset size is relatively small.
Due to the limited data size, dropout ratio was set to 0.9.

• CNDPs (ours): proposed model with typical CE loss.
• CDNPs𝑙 (ours): proposed model with proposed individual-
level loss 𝐿.

Table 1: Optimized model hyperparameters

Systems Latent Lr Loss weight Decay

RNN Δ𝑡1 50 1e-3 2.5

0.95

RNN Δ𝑡𝑎𝑙𝑙 50 1e-3 2
RNN Δ𝑡

𝑦̂

𝑎𝑙𝑙
1

RNN-VAE 50/100 1e-3 1
RNN-VAE𝑦̂ 1

Transformer 2048 1e-5 2 0.98
Transformer𝑦̂ 2.4

CNDPs𝑙 25 1e-4 1.5 0.95
CNDPs𝑦̂

𝑙

Label-enhancing models were further studied by including ad-
ditional input of past longitudinal labels 𝑦 (𝑡) = [𝑦0, · · · , 𝑦𝑡𝑛 ] for
all multi-step-ahead forecasting systems, represented with ∗𝑦̂ (e.g.,
CDNPs𝑙 𝑦̂ ). More details can be found in Appendic B.

4.4 Model Training
For the encoder in CNDPs (cf. Section 3.2), sub-networks 𝑓1 to 𝑓5 are
all fully-connected (FC) layers. The function 𝑓𝑜𝑑𝑒 in the latent ODE
is approximated using 3 FC layers with Tanh activation. Similar
to 𝑓1, the decoder also employs 3 FC layers with ReLU activation,
followed by the output layer. A Gaussian prior is used for the
variational inference, with a mean 0 and a standard deviation 0.01.
Details of the optimized hyperparameters are shown in Table 1.
More information can be found in Appendix C.

The maximum number of context vectors during the training
phase is set to 5, which is randomly determined at each batch
within the range of [1,5]. Only the initial audio sample is used as
the context vector during the test phase. The initial label is also
used in the label-enhancing setting. This is consistent across all
the systems. All models were implemented by Pytorch and trained
using one GPU with 64G memory. The code can be found in Github
repository1.

4.5 Evaluation Metrics
We evaluate two aspects of the systems for COVID-19 disease pro-
gression forecasting. The first one validates the forecasting per-
formance in distinguishing positive and negative samples, as in
conventional classification approaches. Unweighted Average Re-
call (UAR), sensitivity (also named true positive rate or recall), and
specificity (also referred to as true negative rate) are used. Sensitiv-
ity and specificity are metrics that evaluate the performance of a
binary classifier for one group (i.e., positive or negative group) at a
time, and there is a trade-off between the two metrics.

The second evaluates the system performance in tracking and
forecasting each individual’s disease progression over time. There-
fore, point-biserial correlation coefficient 𝛾𝑝𝑏 [37] between fore-
casted trajectory and test labels were computed. It is a special case of
the Pearson correlation coefficient, and commonly used to measure

1Code: https://github.com/TingDang90/CNDP

https://github.com/TingDang90/CNDP
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Table 2: Comparison of CNDPs and state-of-the-art systems in terms of Unweighted Average Recall (UAR), Sensitivity, and
Specificity in percentage (%). 95% confidence intervals is estimated using Bootstrap and reported in paranthesis.

Forecasting Systems UAR Sensitivity Specificity

Audio only

One-step-ahead RNN Δ𝑡1 75.5(71.0-79.5) 73.4(65.6-80.5) 77.6(73.9-81.2)

Multi-step-ahead

RNN Δ𝑡𝑎𝑙𝑙 74.7(70.3-78.8) 73.4(65.5-81.0) 75.9(72.2-79.8)
RNN-VAE 74.8(70.5-78.9) 75.0(67.0-82.2) 74.7(70.8-78.3)

Transformer 75.3(70.3-78.9) 72.7(64.8-80.0) 76.8(73.0-80.7)
CNDPs 77.1(72.6-80.9) 76.6(68.6-83.6) 77.6(73.8-81.3)
CNDPs𝑙 78.1(74.0-81.8) 78.9(71.2-85.7) 77.2(73.1-80.9)

Audio + Labels Multi-step-ahead

RNN Δ𝑡
𝑦̂

𝑎𝑙𝑙
82.5(78.8-85.9) 84.4(78.0-90.4) 80.5(76.9-83.9)

RNN-VAE𝑦̂ 75.1(70.5-79.2) 73.4(65.4-80.6) 76.8(73.0-80.7)
Transformer𝑦̂ 77.9(73.6-81.5) 79.7(72.5-86.2) 75.9(72.1-79.9)
CNDPs𝑦̂ 88.3(84.8-91.5) 84.4(78.0-90.3) 92.3(89.7-94.5)
CNDPs𝑙 𝑦̂ 93.6 (90.8-96.1) 90.6(85.2-95.2) 96.7(94.9-98.2)

the relationship between a continuous variable (e.g., the predicted
probability of positive) and a binary variable (such as COVID-19
status in terms of positive or negative). It is computed as:

𝛾𝑝𝑏 =
𝜇1 − 𝜇0
𝑠𝑛

√︂
𝑛1𝑛0
𝑛2

. (8)

Here 𝜇1 and 𝜇0 are the mean values of the predicted probabilities
𝑝𝑖 for the positive and negative samples of the participant, 𝑠𝑛 is the
standard deviation of the predicted probabilities for all the samples
of the participant. 𝑛1 and 𝑛0 are the numbers of samples in the
positive and negative classes of each participant, while 𝑛 is the total
number 𝑛 = 𝑛1 + 𝑛2. A higher 𝛾𝑝𝑏 indicates a stronger correlation,
thus a better-forecasted disease progression trajectory.

For the participants who consistently report positive or negative
test results, 𝛾𝑝𝑏 is not applicable. Therefore, the ratio of correctly
predicted samples 𝛾 is computed. Details of evaluation metrics can
be found in Appendix D.

5 RESULTS AND DISCUSSION
5.1 Comparison with Baselines
5.1.1 Classification. The results are shown in Table 2. In terms of
the systems without label-enhancing mechanism (i.e., audio only),
four baselines show similar performance. The proposed CNDPs
outperform four baselines in terms of UAR and sensitivity, and
show comparable or better performance for specificity. Surprisingly,
CNDPs outperform RNN Δ𝑡1, where the latter as a one-step-ahead
forecasting problem is expected to be a simpler task. This is possible
as CNDPs capture the continuous disease progression using ODE,
while RNN Δ𝑡1 models it discretely. The inferior performance of the
Transformer is possibly due to the large number of model parame-
ters which are hard to be optimized with our limited data. We have
observed overfitting on the training set even with a high dropout ra-
tio of 0.9. This further shows the advantages of our proposed model
when limited data is available, which is common in real healthcare
scenarios. Further, with only the initial point as observed, the multi-
ple attention heads in Transformers yield no impact. CNDPs𝑙 with
individual-level loss performs best, with relative improvements of
3.4%, 4.6%, 4.4% and 3.7% over four baselines in terms of UAR, and

Figure 3: An example of the forecasted disease progression in
terms of probability of positive over time. Only the sample
at day 0 is given and the disease progression from day 2
are predicted. The forecasted decreasing trend matches the
true disease development from day 0 to day 49, with a high
correlation of 0.98.

7.5%, 7.5%, 5.5% and 8.5% in terms of sensitivity. This suggests that
incorporating the individual-level temporal dynamics in disease
progression aids the positive and negative classification.

Regarding the systems with label-enhancing mechanism (i.e.,
audio + labels), they generally display better performance com-
pared to non-label-enhancing systems (i.e., audio only), suggesting
the benefits of including past health status in the proposed model
for forecasting. The label-enhancing CNDPs𝑦̂ and CNDPs𝑦̂

𝑙
sig-

nificantly outperform three baselines RNN Δ𝑡
𝑦

𝑎𝑙𝑙
, RNN-VAE𝑦̂ and

Transformer𝑦̂ , with CNDP𝑦̂
𝑙
yielding the best UAR of 93.6%, sen-

sitivity of 90.6% and specificity of 96.7%. Further, it can be seen
that RNN-VAE𝑦̂ with the most similar structure to CNDPs𝑦̂

𝑙
and

the advanced Transformer𝑦̂ do not show significant improvements
over their non-label-enhancing versions. Although the inclusion
of the initial health status in RNN-VAE𝑦̂ can lead to a better z𝑡0 in
the latent space (cf. Section 3.2), the decoder in RNN-VAE𝑦̂ is still
discrete and the lack of continuity may not generate better z(𝑡).
On the other hand, z𝑡0 in the CNDPs based models (cf. Figure 2a)
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Figure 4: Comparison in terms of the correlation/ratio between the forecasted progression with test results for the entire test
cohort and the recovery subgroup. CNDPs𝑦̂ and CNDPs𝑦̂

𝑙
significantly outperform baselines in tracking disease progression.

highly determines z(𝑡) governed by the continuous ODE, thus a
better z𝑡0 is obtained, leading to a better z(𝑡) to aid forecasting.
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Figure 5: Performance of RNN Δ𝑡
𝑦̂

𝑎𝑙𝑙
, RNN-VAE𝑦̂ and CNDPs𝑦̂

𝑙
(a) with different number of context vectors, ranging from
1 to 7, and (b) for week 1 to 5 forecasting. CNDPs𝑦̂

𝑙
achieve

accurate forecasting with limited past information, and can
also reliably forecast for a 2-3 week horizon.

5.1.2 Progression prediction. We first presented a case study of
one participant, showing the forecasted probability over 49 days
using CNDPs𝑦̂

𝑙
in Figure 3. A decrease in the predicted probabilities

of positive (pink curve) can be clearly observed, aligning with the
reported recovery trend (shaded background). The correlation 𝛾𝑝𝑏
between the predicted curve and test results is 0.98. Further, we
can classify the probability at each time step as positive or negative
with a threshold of 0.5, which also matches the test results.

The correlation 𝛾𝑝𝑏/𝛾 for the entire test cohort and the recovery
subgroup are displayed in Figure 4. The recovery subgroup includes
participants who reported infection first and recovered after a few
days. For the entire test cohort (All and All𝑦̂ in Figure 4), CNDPs
and CNDPs𝑙 show better performance over four baselines, and the
smaller interquartile range of CNDPs indicates a smaller variability
across different participants. Moreover, CNDPs𝑦̂ and CNDPs𝑦̂

𝑙
with

label-enhancing mechanism display significant improvements over
their non-label-enhancing versions compared to that of other base-
lines. For the recovery subgroup, a similar trend is also observed.
The superior performance using CNDPs (Recovery in Figure 4 with-
out label-enhancing mechanism) further suggests the great benefits
of using audio biomarkers only to capture disease progression and,
therefore, the promises in recovery monitoring.

5.2 Time Dependencies and Forecasting
Horizons

5.2.1 How many days are required for reliable forecasting? We
analysed whether using more past longitudinal audio samples can
improve the forecasting performance for RNN Δ𝑡

𝑦̂

𝑎𝑙𝑙
, RNN-VAE𝑦̂ ,

Transformer𝑦̂ and CNDPs𝑦̂
𝑙
. If the model is capable of capturing the

disease progression using limited past audio samples, the system
performance may not be improved significantly when more past
audio samples are used for forecasting. Figure 5a shows the effect
of varied days on the performance in terms of UAR, since it cap-
tures the performance in both positive and negative classes. RNN
Δ𝑡
𝑦̂

𝑎𝑙𝑙
shows decreased performance, possibly due to the mismatch

between training and test, where the first sample is used to forecast
the future values during the training and first 2 to 7 samples are
used during the test. Performance of RNN-VAE𝑦̂ increases from
75.1 to 78.4 when the number of context vectors increases from 1
to 4, showing that increasing past information is beneficial for fore-
casting using RNN-VAE𝑦̂ . Oppositely, Transformer𝑦̂ and CNDPs𝑦̂

𝑙
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show relatively stable performance, with a slight increase from 77.9
to 79.4 for Transformer𝑦̂ and from 94.1 to 94.4 for CNDPs𝑦̂

𝑙
respec-

tively, when context vectors increase from 1 to 3. The proposed
CNDPs𝑦̂

𝑙
consistently outperform Transformer𝑦̂ . This suggests that

the proposed model can achieve reliable COVID-19 forecasting
with limited past information, e.g., even with only one initial audio
sample.

5.2.2 How long can it effectively forecast? We further investigated
the forecasting horizon of the model, i.e., how long the model can
reliably forecast the disease progression. The forecasting perfor-
mance for different time periods (i.e., weeks) is reported in Figure
5b, ranging from the 1st week to the 3rd/5th week in terms of sen-
sitivity and specificity respectively. Sensitivity after 3rd week was
not analysed due to the extremely scarce number of samples col-
lected afterwards. The blue bars represent the number of samples
for each week, and the coloured lines represent the sensitivity and
specificity of different systems. In terms of sensitivity, it can be
seen a decreasing trend for all four systems. This is reasonable as
forecasting progression in the near future is an easier task com-
pared to that in the far future. The performance drop of CNDPs𝑦̂

𝑙
from week 1 to week 2 is smaller compared to other systems, which
still yields 93.9% for week 2, suggesting its reliability in forecasting
the progression in the next 2 weeks.

In terms of specificity, it is surprising that three baselines show
an increasing trend while CNDPs𝑦̂

𝑙
displays a relatively stable per-

formance from week 1 to week 5. The low specificity at the first
week for three baselines suggests that the models tend to classify
more false positives in the first week, indicating a bias towards
positive classes. This bias could be due to the imbalanced report-
ing period for positive and negative users. Specifically, positive
users tend to report for a shorter period (i.e., 25 days on average)
than negative users (i.e., 40 days on average). The baseline models
may have learned this information unintentionally and used it for
forecasting. Consequently, for the first week, the model takes a
short duration of the sequence and is more likely to predict positive
classes, yielding a higher sensitivity and a lower specificity. The in-
creasing specificity from weeks 1 to 5 could be due to capturing the
skewed distribution in the data instead of capturing the underlying
disease progression. On the other hand, the CNDPs𝑦̂

𝑙
remained rela-

tivelyl stable from week 1 to 5, validating its reliability in capturing
the disease progression instead of the skewed data distributions.
CNDPs𝑦̂

𝑙
, in general, displays better performance compared to other

baselines and also remains stable from weeks 1 to 5. Combining
both sensitivity and specificity, these results suggest the potential
of the proposed systems for forecasting in a 2 to 3 weeks horizon.

5.3 Individual-specific Recovery Rate
The recovery rate (returning to normal from COVID-19 infection)
varies among individuals, due to a variety of factors such as comor-
bidities and age [35, 40]. We aim to investigate the capability of our
models in capturing individual-specific recovery rate. As shown
in Figure 3, we can estimate the recovery rate by estimating the
sharpness of the decrease in the predicted trajectory (pink line).
This is achieved by fitting a second order polynomial function to

(a) CNDPs𝑙 (b) CNDPs𝑦̂
𝑙

Figure 6: Scatter plot of the predicted recovery rate from (a)
CNDPs𝑙 and (b) CNDPs

𝑦̂

𝑙
and reported period of recovery days.

The longer the recovery days, the smaller the recovery rate
|𝛼 |. Negative correlations of -0.4 and -0.39 are observed for
CNDPs𝑙 and CNDPs𝑦̂

𝑙
respectively, suggesting the capability

of the models in forecasting the individual-specific recovery
rate.

the forecasted trajectory, and use the absolute value of the coeffi-
cient of the square term |𝛼 | in the polynomial function to reflect
the recovery rate. A larger |𝛼 | indicates a sharper curve thus a fast
recovery, and vice versa.

A scatter plot between the predicted recovery rates |𝛼 | and the
true recovery days for the recovery subgroup is shown in Figure 6a
and 6b for CNDPs𝑙 and CNDPs𝑦̂

𝑙
respectively. It is observed that i)

the predicted recovery rates vary among individuals, suggesting
the potential in predicting individual-specific recovery rate; ii) a
smaller |𝛼 | (i.e., slow recovery) generally corresponds to a longer
period of recovery days, matching the expectations. The Pearson’s
correlation coefficients between |𝛼 | and the recovery days yield
-0.40 and -0.39 for CNDP𝑙 and CNDP𝑦̂

𝑙
, respectively, further val-

idating the effectiveness of proposed models in forecasting the
individual-specific recovery.

6 CONCLUSION
Novel CNDPs have been proposed for time series forecasting, and
shown great promises in irregular-sampled time series modelling
and achieves accurate forecasting with limited past information.
Themodel validated on a crowdsourced audio dataset for COVID-19
disease progression outperforms state-of-the-art time series mod-
elling approaches, and in-depth analysis further reveals its effec-
tiveness in a relatively long-range forecasting and the individual-
specific recovery trend tracking.

In general, the proposed CNDPs can be potentially employed
for any types of time series, and they particularly benefit chronic
disease progression forecasting in a remote monitoring context,
due to its mechanism in individual-level tracking. Future work in-
cludes personalised model development that incorporates personal
information (e.g. medical history, smoking habits, etc.) or adapts
the universal model to each individual, to better account for the
differences in the individuals’ disease progression (e.g., genetic
variations).
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Appendix
A DATA COLLECTION AND PARTITION
Amobile appwas designed and released in 2020 to collect the crowd-
sourced respiratory sounds. Each participant was encouraged to
record three different sound types via smartphones built-in micro-
phones. This includes cough repeated three times which is forced,
deep breath repeated three to five times, and speech by reading a
sentence displayed on screen for three times. The corresponding
test results are also required, chosen from a list of ’positive’, ’nega-
tive’ and ’not tested’. Additionally, participants’ symptoms, medical
history, demographics, smoking status and hospitalisation are also
collected. The app was released in multiple platforms including
Android, iOS and a webpage. Therefore, the data contains different
formats of audio files (i.e., .wav, .m4a, etc.) and different sampling
rate (i.e., 48kHz, 44.1kHz, 8kHz, 16kHz, etc.). The data will be made
publicly available for academic research upon publication.

We divided the users into training (70%), validation (10%), and
testing (20%) sets, with an equal number of positive and negative
users in each set. We also aimed to balance the gender, age, and
language distribution across these sets.The details of demographic
data for each set is shown in Figure 1.

Regarding data size, we implemented data augmentation, leading
to a threefold increase in the data size compared to the original size.
This approach was expected to reduce overfitting. We appreciate
the reviewer’s suggestion and will consider implementing cross-
validation in future work.

B BASELINES
The state-of-the-arts systems for time series forecasting as compar-
isons to our proposed model are detailed below:

• RNN Δ𝑡1: It is a classic RNN based autoregressive model. The
time difference between consecutive days of audio record-
ings is used as additional input to model irregular-sampled
time series. This baseline uses the past longitudinal audio
samples [x1, x2, · · · , x𝑛] to predict label at next time step
y𝑛+1. It is a one-step-ahead forecasting framework.

• RNN Δ𝑡𝑎𝑙𝑙 : This employs a similar structure as RNN Δ𝑡1,
but used for multi-step-ahead forecasting. The past longi-
tudinal audio sample [x1, x2, · · · , x𝑛] is used as the context
vector to forecast the future COVID-19 test labels 𝑦 (𝑡) =

[𝑦𝑛+1, · · · , 𝑦𝑁 ].
• RNN-VAE: This is an RNN based encoder-decoder structure
[31]. The past audio samples from 𝑡0 to 𝑡𝑛 are first trans-
formed to a latent distribution, and a random sample z0 is ob-
tained and used as the initial hidden state for the RNN based
decoder. The recurrent processing in the decoder achieves
the disease progression forecasting within [𝑦𝑡𝑛+1 , 𝑦𝑡𝑁 ].

C MODEL TRAINING
For the encoder in the proposed CNDPs, 𝑓1 to 𝑓5 adopts fully-
connected (FC) layers. 3 FC layers are used for 𝑓1, and 2 FC layers are
employed for 𝑓2, 𝑓3, 𝑓4 and 𝑓5. ReLU activation is used for input and
hidden layers. Each hidden layer consists of 100 neurons. The latent
distribution s0 and r is empirically set to 25 dimension, leading to
z𝑡0 of dimension 50. For the typical loss, weighted cross entropy

(CE) with Sigmoid activation is used. The weights are optimized
within [1, 5].

To enable a fair comparison, the network structure in RNN Δ𝑡1,
RNN Δ𝑡𝑎𝑙𝑙 and RNN-VAE is similar as in CNDPs. For RNN Δ𝑡1 and
RNN Δ𝑡𝑎𝑙𝑙 , one GRU layer is used with latent dimension setting to
25, as it shows better performance than 50 (used in CNDPs). In terms
of the RNN-VAE, the encoder and decoder adopt similar network
structure, which employs one GRU layer with latent dimension
setting to 50 and 100, respectively. One FC layer is used as the
output layer. The scaling factor for the KL divergence in the loss
function is set by 1 initially and decaying with a ratio of 0.01 at
each epoch. Similarly, weighted CE loss is used.

The parameters of the model have been fine-tuned over a range
of values. The Adam optimizer was adopted for all the systems.
The initial learning rate (lr) is optimized within [1e-2, 1e-3, 1e-4,
1e-5]. The decay factor is tuned within the range of [0.98, 0.95,
0.9]. The optimal latent dimension for RNN-based models is chosen
from [25, 50, 100], while for CNDP-based models it is selected from
[25, 50]. Additionally, the weight for the cross-entropy loss is fine-
tuned within the range of [1, 4]. 60 epochs were used, and the best
model with highest sum/product of sensitivity and specificity in
the validation set is saved and used for test.

D EVALUATION METRICS
In terms of the classification accuracy in Table 2, UAR represents the
average of recall for each class. Sensitivity and specificity demon-
strate the model’s capability in identifying correctly positive and
negative samples, respectively [23].

The Point-Biserial Correlation Coefficient 𝛾𝑝𝑏 is used to evaluate
the forecating performance in tracking individuals’ disease pro-
gression and calculated between the forecasted trajectory and test
results for each participant. For the participants who continuously
reported positive or negative test results, we adopted the accuracy
𝛾 computed as the ratio of the correctly predicted samples 𝑁𝑖 over
the total number of samples for each participant. as:

𝛾 =
𝑁𝑖

𝑁
(1)

where 𝑁𝑖 and 𝑁 are the correctly predicted samples and the total
number of samples of each individual. 𝛾𝑝𝑏 ranges within [-1,1], and
𝛾 is in the range of [0,1]. A higher value of𝛾𝑝𝑏 or𝛾 indicates a better
forecasted trajectory. Therefore, we pool 𝛾𝑝𝑏 and 𝛾 together for all
the participants in the test cohort and reported the performance.

E NDP LOSS
NDPs are trained using an amortised variational inference proce-
dure, which jointly optimised the encoder, the latent ODE and the
decoder by maximising the ELBO, equal to minimising the loss
function 𝐿(𝜃, 𝜙) as:

𝐿(𝜃,𝜙) = Ez𝑡0∼𝑞𝜙 (z𝑡0 |xC,𝑡C,𝑦C ) [−𝑙𝑜𝑔𝑝𝜃 (𝑦T |z𝑡0 , 𝑡, 𝜃 )]
+ 𝐷𝐾𝐿 (𝑞𝜙 (z𝑡0 |xC, 𝑡C, 𝑦C) | |𝑞𝜙 (z𝑡0 |xT, 𝑡T, 𝑦T))

(2)

It consists of the negative log-likelihood and KL divergence, with
𝐷𝐾𝐿 representing the KL divergence, and 𝑞𝜙 representing the vari-
ational posteriors learnt for the hidden state z𝑡0 . The subscripts
C and T represent the context vectors and target vectors, where
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Figure 1: Data statistics in the training, validation, and test partitions in terms of gender, age, and language. a: gender, b: age, c:
language.

context vectors are past longitudinal samples, and target vectors
are the future samples (cf. section 3.1).
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