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ABSTRACT

Studies of automotive traffic have shown that on average
30% of traffic in congested urban areas is due to cruising
drivers looking for parking. While we have witnessed a push
towards sensing technologies to monitor real-time parking
availability, instrumenting on-street parking throughout a
city is a considerable investment.

In this paper, we present ParkSense, a smartphone based
sensing system that detects if a driver has vacated a parking
spot. ParkSense leverages the ubiquitous Wi-Fi beacons in
urban areas for sensing unparking events. It utilizes a robust
Wi-F1i signature matching approach to detect driver’s return
to the parked vehicle. Moreover, it uses a novel approach
based on the rate of change of Wi-Fi beacons to sense if the
user has started driving. We show that the rate of change
of the observed beacons is highly correlated with actual user
speed and is a good indicator of whether a user is in a vehi-
cle. Through empirical evaluation, we demonstrate that our
approach has a significantly smaller energy footprint than
traditional location sensors like GPS and Wi-Fi based posi-
tioning while still maintaining sufficient accuracy.

Categories and Subject Descriptors
C.3 [Special-Purpose And Application-Based Systems]

General Terms

Design; Experimentation; Measurement

Keywords

Smartphone Sensing; On-street Parking; Wi-Fi Fingerprint-
ing

1. INTRODUCTION

In metropolitan city centers and dense urban areas around
the world, parking space is an expensive and often scarce re-
source. This scarcity leads to high demand for parking space
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and during busy periods of the day, it is common for drivers
to spend a significant amount of time searching for available
spots. While off-street parking garages are usually equipped
with necessary infrastructure to estimate the number of un-
occupied spaces, the situation with on-street parking is less
favorable. This lack of information on the availability of
on-street spaces is usually frustrating for users and leads to
cruising drivers looking for vacant spots.

A study [21] of major downtown areas has shown that 30%
of the traffic in these congested areas is in fact due to cruising
vehicles. This situation can be alleviated by providing real-
time occupancy information to cruising drivers. In [19] the
authors show, through a simulated model of an urban city
center, that when real-time occupancy of on-street parking
is disseminated to drivers, it results in a reduction of 15%
in total travel time. In a survey reported in [18], it is shown
that 30% of the 483 surveyed drivers changed their intended
parking destination in response to road-side guidance signs
indicating space availability at car parks. It is reasonable to
expect similar behaviour change when users are presented
with on-street parking availability information. If this infor-
mation is accessed before the start of the journey, it can also
potentially result in a change of transport mode, for exam-
ple, a user might decide not to drive if there are no spaces
available in the vicinity of his/her intended destination.

A number of on-going research efforts are aiming at sys-
tems that can offer real-time parking availability estima-
tions. These efforts rely on specialized infrastructure, either
embedded in roads [4] or on vehicles [17] to capture real-
time space occupancy. However, there are significant costs
involved in instrumenting large cities. On the other hand,
smartphone applications such as ParkMobile! and Payby-
Phone? that allow users to view where parking spaces are
located and also pay for these, have seen a wider adoption.
Considering the ease of deployment and maintenance costs,
it is reasonable to assume that soon the majority of urban
parking will be managed and paid for through smartphones.

Motivated by this trend, we develop ParkSense, a smart-
phone based sensing system that can detect if a driver has
vacated a previously occupied parking space. The primary
design goal of ParkSense is to minimize its impact on the
battery life of the user’s device while still maintaining an
accuracy level that could allow estimations on parking avail-
ability. The requirement for low energy prevents us from
using traditional location sensors available on smartphones
which typically impose a significant energy cost. ParkSense,
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therefore, uses the wireless interface to sense user mobil-
ity. It takes advantage of the widely deployed Wi-Fi ac-
cess points in urban environments that periodically trans-
mit their SSIDs as beacons. ParkSense uses robust Wi-Fi
signature matching based on the beacon reception ratio to
detect a user’s return to the parked vehicle. We show that,
in our outdoor scenario, this beacon reception ratio based
signature matching performs significantly better than signal
strength based functions used by previous location tracking
approaches [14, 15]. ParkSense also utilizes a novel approach
to detect if the user has started driving by observing the rate
of change of visible access points. The primary contributions
of this work are as follows:

e We develop a smartphone based sensing system for on-
street parking space occupancy that can be readily inte-
grated into systems in use today.

e We show through micro-benchmark energy measurements
and experiments from actual devices that our approach
is much more energy efficient as compared to traditional
location sensors. Our approach consumes less than 30%
of the energy of possible alternatives based on traditional
location sensors on smartphones.

e We empirically demonstrate through a four month user
trial, the feasibility of using smartphone based sensing
to detect unparking events in order to estimate parking
availability.

The rest of this paper is organized as follows. In the fol-
lowing section, we discuss the motivation and the design
guidelines that led us to ParkSense in more detail followed
by the analysis of energy consumption of traditional location
sensors available on current smartphones. We then present
our approach and the results from our four month long user
study. We conclude with a discussion of some of the limita-
tions of our approach and how these can be mitigated.

2. MOTIVATION

The majority of on-street parking spaces are managed
through legacy parking meters where the driver has to pay
a fixed amount for a predefined duration, or pre-pay for the
expected time that they intend to leave their vehicle. The
side-effect of this model is that the majority of the drivers
tend to over-pay for their parking time to avoid being penal-
ized with large fines for overstaying. This makes informa-
tion collected through such systems unreliable for estimat-
ing parking availability. Furthermore, as the majority of the
legacy parking meters are offline, there are no mechanisms
to capture accurate real-time availability of parking spaces
which can be very precious to route drivers to appropriate
parking areas. While the situation is rapidly changing with
electronic and smartphone based payments for parking, the
legacy model of pre-payment is still prevalent.

The proliferation of mobile phone based parking payment
applications offers a unique opportunity to capture parking
availability information through the users’ mobile devices.
In the central London borough of Westminster, over 9,000
on-street parking spaces managed by the local city council,
accept only electronic payments for parking, with a smart-
phone application as the predominant means of payment.
This smartphone based system is being gradually rolled out
to other parts of London and also in other UK cities. In this
work, we explore the feasibility of augmenting such park-
ing payment mobile applications with sensing capabilities
that would allow the accurate detection of available parking

space for on-street parking. Through a series of consulta-
tions with domain experts and parking management com-
panies, we identified that the primary objective is to design
a mobile phone sensing service capable of detecting when
a driver vacates a parking spot, with minimal impact on
the driver’s mobile device. Indeed, considering that phone-
based parking payment applications can accurately capture
the time when a driver occupies a space, the main challenge
is to discover when that space is vacated — in most cases
long before the payment has expired.

We established a close collaboration with a major com-
pany offering phone-based parking payment systems in the
UK in order to explore the requirements for a parking avail-
ability estimation system. During this process we discussed
the possiblity of relying on user feedback about parking du-
ration, expecting users to report through their mobile phone
when they unpark their car. However, such solution was con-
sidered unreliable. Previous attempts to rely on user feed-
back about parking availability, such as Google OpenSpot [1]
have failed to gain traction, with users often forgetting to
report when they depart from a parking spot, thus not al-
lowing a reliable estimation of city-wide parking availability.
The possiblity of using financial rewards to incentivise un-
parking reporting was dismissed as well. In most on-street
parking areas in the UK, there are a number of stakehold-
ers involved in managing them. Parking prices are planned
and managed by local city authorities, often based on a pric-
ing strategy that is intented to incentivize drivers to avoid
certain locations at different times of the day. Payment tech-
nologies, such as smartphone based payments, are typically
outsourced to specialised companies. For such companies
to accept the incorporation of a parking availability detec-
tion system on their mobile applications, it was important
to avoid any interference with the pricing scheme managed
by the local authorities. Offering financial rewards to drivers
related to their parking behaviour was considered such inter-
ference. Furthermore, domain experts raised concerns that
linking the use of such application with financial rewards
would carry the risk of motivating users to try to deceive
the system in order to maximise their fiancial gains. Based
on these observations we, therefore, aimed for a system that
can detect unparking without user intervention.

Unparking detection through mobile phone sensing can
have a significant impact on the battery life of users’ mo-
bile device. Therefore, for any such system to be accepted,
the primary concern is to minimize the battery consumption
required for detecting an unparking event. On the other
hand, using such information to estimate parking availabil-
ity means that the accuracy requirements can be relatively
low. The SFpark [4] system, an infrastructure based park-
ing detection system deployed in the city of San Francisco,
considers 70% detection accuracy as acceptable [3] for esti-
mating parking occupancy. This assessment is justified by
the fact that a parking availability information system esti-
mates availability based on aggregated data from multiple
users in a given area. Inaccuracies in the sensing data are
therefore less important as long as the number of participat-
ing users is high. Based on these observations, we attempt
to design a detection mechanism with minimal energy re-
quirements for the user’s device (in order to facilitate wider
adoption), while relaxing the need for high accuracy that
perhaps could be achieved through more expensive sensing.

The key requirements for the design of such system are: (i)
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Figure 1: In a pay-by-phone parking application, sensing is
initiated when the driver has parked and paid. Detection of
unparking requires tracking the driver until they return to
their vehicle and drive away.

considering that parking is initiated by payment, the system
should be able to detect the time at which the driver returns
to the vehicle and unparks, (ii) the system should be able to
detect unpacking incidents without user intervention with
minimal energy overhead, (iii) the system should not collect
user location information beyond the parking location.

3. ALTERNATIVE SENSORS

Using mobile phone sensing to detect when a driver va-
cates a parking space can be considered a special case of an
activity detection problem. It can be defined as a sequence
of specific actions that are expected by the driver: (i) initi-
ate a parking incident through mobile phone payment, (ii)
walk away from the vehicle, (iii) return to the vehicle, (iv)
drive away (Figure 1). This sequence of actions is primarily
related to the relative location of the driver and the vehicle.
A typical approach for detecting these actions could be to
rely on localization technologies readily available on current
smartphones. In this section, we explore the feasibility of
detecting these actions using location sensors.

3.1 GPSBased Location

GPS based location tracking could be considered a natu-
ral choice for our application. Continuous tracking of users,
after they have parked their vehicles, could allow us to de-
termine when they return to their vehicles. Furthermore,
estimation of the user’s speed from the GPS sensor can be
used to discover if the user is driving again after returning
to the parked vehicle. However, there are several issues with
this approach as we further discuss.

It is well known that GPS receivers require a significant
amount of time to acquire an initial fix and to produce a
location estimate after being switched on. The time re-
quired to acquire an initial fix is also unpredictable because
it depends on several factors such as the time since last
fix and surrounding environment affecting the signal multi-
path [13]. While Assisted GPS aims to shorten this delay
by acquiring ephemeris data through cellular networks, the
time required to search and acquire satellite signals is un-
avoidable. This delay is typically translated to additional
energy consumption by the GPS chip.

While new GPS chips have significantly improved energy
consumption, GPS sensors are still very power hungry. Fig-
ure (2a) shows the instantaneous current drawn by a Sam-
sung Galaxy S2 running a location-based application that
requests a GPS reading every 10s. The measurement was
collected outdoors where the phone had a clear view of the
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Figure 2: Energy consumption of GPS sensor

sky. The “baseline” current drain of the device, when the
GPS is switched off is 36.3 mA. The mean current consump-
tion jumps to 115mA when the API requests location from
the GPS sensor. In this particular case, it takes about 45s
for the GPS to acquire an initial fix and subsequent requests
take on average 7s. The energy consumed for the initial fix is
23,447mJ and the mean energy consumption for subsequent
requests is 2,831mJ.

This measurement represents a best case scenario as the
phone is outdoors with a clear view of the sky. In our parking
application, it is highly likely that the user will move indoors
after parking his or her vehicle. While it is well known that
GPS receivers struggle to estimate location without a clear
line of sight to satellites [9, 14], the energy consumption
is also significantly higher in these scenarios. Figure (2b)
shows the current consumption on the same smartphone as
our previous experiment when it is moved indoors. In this
case, not only is the sensor unable to estimate location, the
device current consumption also stays constantly high at
120mA.

3.2 Network Based Location

An alternative location API available on current smart-
phones is network based location. This requires the mo-
bile device to perform a scan for surrounding Wi-Fi access
points. The captured access point SSIDs are transmitted
over the cellular network to a remote server which translates
this SSID set into a location coordinate using a wardriv-
ing database. Although this enables the mobile device to
quickly acquire location coordinates, this approach is more
suited for one off queries rather than periodic location up-
dates due to the high energy consumption of the cellular
radio interface. Figure (3) shows the current consumption
for a single location query using the network based location
API on both Samsung Galaxy S2 and Samsung Galaxy S1
devices. It shows that the device continues to draw high
current even after the location response is received due to
the 3G tail. The total energy cost of performing a single
network based location request is 8,229mJ and 3,920mJ for
Samsung Galaxy S2 and S1 respectively.

In addition to its energy characteristics there are other
issues with this approach. As network based localization
relies on wardriving data, it offers relatively coarse grained
location. Due to the high energy costs of network based loca-
tion queries, smartphone operating systems also aggressively
cache the location responses thus making this approach less
suitable for continuous tracking.

We now briefly analyse the energy consumption of Wi-
Fi scanning which will form the basis of our approach for
detecting unparking events. Figure (4) shows the current
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Figure 3: Energy consumption of network location

consumption of both of our test devices while performing
a passive scan for Wi-Fi access points. The mean current
consumption for Samsung Galaxy S2 and S1 is 114mA and
140mA, respectively. A passive scan usually takes a fixed
amount of time. It takes 1.2s and 0.65s to complete the
scan resulting in an energy cost of 512mJ and 335mJ on
Galaxy S2 and S1, respectively.

3.3 Accelerometer

Although an accelerometer is not an alternative sensor
for tracking the location of a user, in our specific scenario
it can be used to detect the actual activity of the driver.
The accelerometer is an attractive option because of its low
energy consumption. It has been exploited in a number of
activity detection systems [8] to detect physical activities,
such as “walking”; “cycling”, “driving”, etc. However, achiev-
ing high accuracy through accelerometer data alone can be
quite challenging. Challenges include the variability of the
readings depending on the phone placement — traces from
a phone attached to the vehicle’s dash board will be very
different to those from a phone in the driver’s pocket — and
whether the classifier is trained over a dataset collected from
the actual user.

In the parking scenario, the accelerometer can assist in
detecting the transition between a driver walking back to
their vehicle and driving. However, if used without any ad-
ditional information regarding the relative location between
the driver and the vehicle, it can lead to erroneous results.
For example, simply detecting the change between walking
and riding a car could lead to wrong inferences for users
who park their car in order to use public transportation,
such as busses or trains — a common scenario in metropoli-
tan centers. A more practical use of the accelerometer in
this scenario could be to act as a low power sensor that
can trigger more accurate detection through location based
sensing [23].

This shows that while current smartphones are equipped
with a range of sensors and location technologies, these are
not suitable for our application scenario either due to high
energy consumption or dependence on user specific factors.
Following the analysis of possible sensing modalities, we now
embark on the design of a novel approach motivated by the
specific requirements of our application.

4. WIRELESSBASED SENSING

The primary motivation for the design of ParkSense is to
build a mobile phone application that can detect the evacu-
ation of parking spaces, while minimizing the impact on the
user’s mobile device. We saw in the previous section that
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Figure 4: Energy consumption of Wi-Fi scanning

performing passive wireless scans is the lowest energy oper-
ation as compared to other location sensors. This motivates
us to explore the wireless interface as a sensor to sense driver
mobility.

Current smartphone based parking payment systems re-
quire the user to make a payment for the amount of time that
they intend to stay in on-street parking before they leave the
vehicle. These users generally use a smartphone application
provided by the parking management company where they
enter a unique location code and their payment details to
pay for parking while they are still at the parking location.
Each set of parking slots has a unique location code that is
clearly marked on a sign on the pavement beside the parking
space. When the payment transaction completes, the user
can leave the vehicle. Leaving the vehicle without making
the payment leaves them open to parking infringement fines
and tickets. ParkSense captures a wireless signature during
this payment phase by running multiple Wi-Fi scans when
the user is at the parking location waiting for the transaction
to complete. This wireless signature consists of the SSIDs of
the Wi-Fi access points and the number of times a beacon
frame was received from each access point. Let us represent
this Wi-Fi signature with sets

Sp = {sp(1),8p(2),...5p(n)} and
Wy = {wp(1), wp(2), ... wp(n)}

where sp,(¢) is the SSID and w,(4) is the beacon reception
ratio for access point i and n is the total number of access
points observed in all the scans. The beacon reception ratio
wp (i) is the fraction of scans for which the access point i
was visible i.e. wp(i) = vp(i)/m where vp(i) is the number
of scans in which a beacon frame was received from access
point i and m is the total number of scans. ParkSense saves
this signature and then periodically performs new wireless
scans as the user moves away from the vehicle. From each
successive window of size m, it creates a new signature with
S: and W, in the same manner as described above. It uses
these periodically generated signatures to decide if the user
has returned to the parked vehicle.

This is similar to Wi-Fi fingerprint based localization [6].
However, as opposed to traditional localization where each
fingerprint is assigned a coordinate in the geographic space,
we do not perform any translation from the fingerprint to
the real coordinates. This allows us to do away with any
other external input (either from the user or any other sensor
like GPS) and thus the sensing relies only on performing
passive Wi-Fi scans. This makes this approach significantly
more energy efficient. Detecting that the user has vacated
a parking spot can be decomposed into two sub-problems,



1) sensing that the user has returned to the parked vehicle
location 2) detecting that the user is in a moving vehicle
after returning to the parking location. In the following
subsections, we describe how ParkSense functions to sense
these scenarios.

4.1 User Returningto Vehicle

ParkSense detects the return of the user to the parked ve-
hicle by comparing the periodically generated signature sets
S: and W, with the saved signature S, and W,. However,
this is a challenging problem because wireless signals are af-
fected by multi-path fading, device placement close to the
body and the changing environment in urban areas. The ac-
cess points are usually located within the buildings and other
infrastructure that attenuate the radio signals significantly.
Therefore, the signal strength of radio signals received by
the mobile device is usually just above the radio transceiver
sensitivity making it difficult for the radio to receive the
beacon frames. This manifests in a continuously changing
wireless environment even if the user or the mobile device
is stationary. To overcome these issues, we define the Wi-
Fi signatures over a set of scans rather than a single scan.
We also use the beacon reception ratio as opposed to the sig-
nal strength in our Wi-Fi signatures. It has been shown that
the beacon reception ration can be more robust and a better
indicator of distance in outdoor urban environments [7] as
compared to received signal strength. From W, we define
a set of normalized reception ratios Wp as,

Wp = {wp(1), Wp(2), ..., Wp(n)} (1)

where Wy (i) = wp(i)/ D7 wp(i). These normalized beacon
reception ratios can be thought of as weights assigned to
access points. An access point that was visible in all the
scans gets a higher weight whereas the ones that appear in
only a few scans get lower weights assigned to them. We
then define the matching between saved signature and the
current signature as,

l
= pr(i) for sy(i) €S, NSy 2)

where 0 < M <1 and [ =[S, N S¢|. Therefore, the match-
ing function is just the sum of normalized weights of access
points that are common to both signatures. When no bea-
cons are received from access points that were seen at the
parking location, the matching M = 0 and it increases as
more and more of those access points re-appear. Access
points that were seen more frequently at the parking loca-
tion result in a larger increase in M as opposed to those
that were observed infrequently. This matching function
takes into account all of the access points initially observed
at the parking location and does not discard the ones with
low reception ratios. It merely trusts them less than those
that were frequently seen.

Here we must point out that Eq. (2) relies on the normal-
ized weights from Wp only and does not use W¢. To observe
if this has any effect on the signature matching performance,
we define two more matching functions. Eq. (3) defines a
matching function that penalizes the access points according
to the difference between the saved reception ratios and cur-
rently observed values. Eq. (4), on the other hand, defines
a function that removes the reception ratio completely and
uses the percentage of saved access points as the matching
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Figure 5: Comparison of normalized GPS speed and Jaccard
dissimilarity between successive Wi-Fi signatures.

function. We will refer to Eq. (2) as Weighted, Eq. (3) as
Weighted Difference and Eq. (4) as Percentage. In Section 6
we will compare the performance of these to signal strength
based signature matching functions.
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4.2 User Driving Away

When the user is in a vehicle that is moving at a typical ur-
ban road speed, the successive wireless signatures observed
by the mobile device bear very little similarity as the vehicle
comes within range of access points that may be located in
buildings beside the road and then moves away from them
quickly. A vehicle traveling in urban traffic tends to follow
a certain pattern. It accelerates quickly, travels at a certain
speed, decelerates and then comes to a stop due to queues,
traffic lights or road junctions. In fact, the entire journey of
a vehicle in an urban area is composed of these start stops
known as driving cycle in transportation research [11].
order to demonstrate this, we collect a GPS trace from a
mobile device in a vehicle traveling in urban traffic. Figure
(5) shows the speed of the vehicle for this particular trip in
the top plot. It shows that in urban traffic, a vehicle contin-
uously speeds up and then stops either due to other vehicles
or traffic lights.

But what effect do these drive cycles have on the wireless
beacons observed by the mobile device inside the vehicle?
In order to answer this question, we take a trace of Wi-Fi
scans collected by the same mobile device. These scans were
divided into windows of size m=4 (We will show in Section 6
that other window sizes are possible and that the window
size has little impact) and for each window, we create the
signature sets S; and W;. Then we compute the Jaccard
similarity [12] between each pair of successive windows as,

[S¢ N Si—1]
S, US| ()

Jaccard similarity is merely the ratio of the number of ac-
cess points observed in both windows to the total number

J =
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Figure 6: Comparison of the distribution of Jaccard Index
for walking and driving in an city center.

of access points in the two windows. As the vehicle speeds
up, we expect the successive windows to be different (low
similarity) and as the vehicle slows down, these successive
windows to be more and more similar. In order to make
the visual comparison easy, we plot the dissimilarity 1 — J
(also known as the Jaccard distance) between each pair of
successive windows and the normalized GPS speed in Figure
(5). This shows that there is a strong correspondence be-
tween the wireless beacons observed by the smartphone and
the speed at which the user carrying the phone is traveling.
Therefore, the wireless signature can be used as a proxy to
estimate user mobility.

However, one might ask, what does the wireless signature
look like when the user is not in the vehicle but continuously
moving. Could this be mistaken for vehicular movement? In
order to answer this, we collected another trace where a user
carrying the same mobile device walked in the same urban
area where the vehicle was traveling. Figure (6) shows the
distribution of Jaccard Index for a user walking in the same
urban area. It also compares it with the one obtained from
the vehicle trace and shows that the Jaccard Index for the
vehicular trace varies much more than pedestrian type mo-
bility. In order to detect that a user is moving away in
a vehicle, we need a mechanism that can detect a change
from ordinary pedestrian mobility to vehicular mobility by
inspecting the distribution of the Jaccard Index. In the fol-
lowing paragraphs, we briefly describe an algorithm for this.

Page-Hinckley Test

The Page-Hinckley Test (PHT) also known as Cumulative
Sum (CUSUM) test is a widely used statistical algorithm for
detecting a changes in processes [10]. It uses sequential ob-
servations of the process and detects if the process mean has
shifted by more than the specified amount. The sequential
nature of the algorithm is particularly attractive for our ap-
plication where the results of Wi-Fi scans arrive periodically.
As the name suggests, the algorithm sequentially computes
cumulative sums using the following two equations,

Sm(l) = I“IIELX(O7 Shz(l — 1) +xz; —T— k‘) (6)
Sio(7) = max(0, Sio(i — 1) + T — k — x3) (7)
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Figure 7: Android App used for collecting realistic data dur-
ing user study.

where Spi(0) = S;o(0) = 0, x; is the process mean usually
calculated from a sample of ¢ observations, T" is the target
value of mean for which the process is considered to be under
control and h and k are design values. When the value of
Shi(2) or Sio(7) exceeds h, the process is considered to have
undergone a change. The value of k is calculated as,

c=0/\4 (8)
k= 65/2 (9)

where o is the process standard deviation and ¢ is the amount
of shift in the process mean that we want to detect expressed
as a multiple of standard deviation of sample means. We use
this approach to detect when the mean of the Jaccard Index
J computed over successive windows drops below a thresh-
old which indicates that the user is moving in a vehicle in
urban traffic.

5. EXPERIMENTAL STUDY

We developed a smartphone application for Android OS
that was released through Google Play (Figure 7). The ap-
plication was launched as a parking logger allowing users to
record where they parked their vehicle and collect statistics
about parking payments. Essentially the application emu-
lates the behaviour of a pay-by-phone parking application
where users enter the amount of time that they intend to
park and the amount of money that they had paid when
they parked their vehicles. When a parking event is trig-
gered by the user, the application records the wireless sig-
nature of the parking location and then continues to perform
Wi-Fi scans and saves this data in a log file. Users can then
mark the unparking event by pressing a button. This trig-
gers the GPS sensor which is used to collect the data during
driving. The smartphone application communicates with a
back-end service hosted on Google App Engine to upload the
logged data using a RESTful API. The application displays
all the previous parking locations, durations and payments
on a map. The same information is also available from a
webpage where the users can login to view these details on
a larger map in a browser window.

The data collection period lasted four months. During
this period, 59 traces in 4 different cities were collected.
Out of these 59 traces, the GPS data was available for 45
parking sessions. On inspection, we observed 41 of these
sessions are complete sessions where the users eventually
unpark and drive away. However, the remaining 4 traces
were incomplete where the users appear to have triggered
unparking but did not return and drive away. Nevertheless,
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we include these traces in our evaluation to test for false
positives for driving detection. In our traces, the minimum
parking duration is 15 minutes, longest one is 3.5 hours and
the mean difference between the paid and actual parking
time is 30 minutes. Figure (8) shows the distribution of
access points observed at these parking locations. All the
traces were collected from actual on-street parking at various
locations.

6. EVALUATION

In this section, we evaluate the performance of our Wi-
Fi based sensing approach to detect unparking events. First
we evaluate the accuracy of the signature matching functions
proposed in Section 4.1, then we look at the ability of the
Wi-Fi signals to predict the mobility of the user, as described
in Section 4.2, and finally we investigate the overall accuracy
of the system in detecting unparking events.

6.1 Signature Matching

Previous research on Place Learning [14] and Proximity
estimation [15] use a signal strength based similarity metric
known as Tanimoto Coefficient to calculate similarity be-
tween Wi-Fi signatures. These applications are focused on
indoor environments where the received signal strength from
different access points located in the environment is usually
quite high. Our outdoor application scenario, on the other
hand, requires us to work with Wi-Fi signals that are usu-
ally severely attenuated. Under these conditions, the beacon
reception ratio has previously been shown [7] to be a more
robust choice. There are also several other general similarity
metrics, including Jaccard Index and Cosine Similarity. We
compare the three signature matching functions, Weighted,
Weighted Difference and Percentage Intersection, proposed
in Section 4.1 with the signal strength based Tanimoto Coef-
ficient, signal strength based Cosine similarity and the Jac-
card Index for comparing periodically captured signatures
to the one saved during parking.

All of these matching functions produce a match value
0 < M < 1 with zero for no match and one for a perfect
match. We also have to choose a threshold 7 such that
M > 7 is considered a match. If 7 is set too high, it will
result in a lower ratio of successful detections of the user
returning to the parked location. This can be caused by
irregular changes of the wireless signature due to multi-path
fading, changing environment, missing or low reception ratio
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Figure 9: Comparison of different signature matching tech-
niques.

access points and thus rarely matching completely with the
saved signature. If 7 is set too low, it can result in false
positives. For example, if the user parks the vehicle and
walks to a nearby location, some of the access points will
keep appearing in periodic scans and can cause a false match,
indicating that the user has returned to the parking location
when in reality he/she has not done so. Figure (9) shows the
percentage of correctly identified user returns in 41 of our
driving away traces as we vary the matching threshold 7. It
shows that our reception ratio based matching functions are
able to correctly identify more than 90% of user returns with
a threshold 7 = 0.6. The cosine similarity captures 80% of
returns with Tanimoto just above 60%. As expected, the
performance of all matching functions drops as the value of
the threshold 7 is reduced (resulting in false positives) or
increased (resulting in missing user return).

In our traces, the scanning interval is 2s i.e. after every 2s
the application performed and logged a scan. However, while
the user is away, the scanning rate can be reduced signifi-
cantly to save energy. We adopt an approach for adaptive
scanning where the scanning frequency is throttled down
when it is estimated that the user is far from the parked
vehicle. Specifically, the approach that we adopt is to per-
form a single scan infrequently. If none of the access points
sp(2) that were captured during the parking event appear in
this scan, we can continue to perform infrequent scans. If,
however, any of the captured access points appear again, it
triggers frequent (2s) scanning and thus signature matching.
This frequent scanning times out if the match value M does
not appear to increase or exceed the threshold 7 indicating
that the user is staying in the vicinity of parking location
but not approaching it. If this happens, the next trigger to
fast scanning is done on access points s,(i) that have not
been observed so far to avoid continuous triggering. We ex-
plored the potential duration of infrequent scanning interval,
by subsampling the collected traces captured by our mobile
application. We found that in our traces an interval of up to
60s can be maintained with this approach, without affecting
the accuracy of detection.

6.2 User Driving

In Figure (5), we showed that there is a strong correspon-
dence between the Jaccard Index calculated over successive
windows and user speed. Now we quantify this correspon-
dence. We split the traces where the drivers unparked and
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Figure 10: Correlation between normalized GPS speed and
Jaccard Index computed over successive scan windows.

drove away from parked locations into parking and driving
periods using the GPS ground truth. Then we calculate
the Jaccard Index over successive windows of Wi-Fi scans
(with window size m=4) during the driving portion of the
trace. And finally, we calculate the correlation between the
user speed obtained from GPS and the Jaccard similarity
over adjacent scan windows. Figure (10) shows the correla-
tion coefficients for a random sample of 30 traces: a strong
correlation between vehicle speed and the Jaccard similar-
ity calculated from the Wi-Fi scans as the user moves in
an urban space is evident. The coefficients are negative be-
cause, as the user speed increases, the similarity between
scan windows becomes small and vice versa. Figure (10)
also plots the P-values for these coefficients. These values
are extremely small (on the order of 107'® to 1072°), which
suggests that the associated correlation values are indeed
significant. To determine the best window size for sensing,
we vary it and observe its effect on the correlation coeffi-
cients. Figure (11) shows that as the window size increases,
the median correlation between user speed and the Jaccard
similarity goes down. It shows that the maximum (negative)
correlation is achieved with window size of 4.

6.3 Sensing Accuracy

We now look at the sensing accuracy of the complete sys-
tem i.e. the ability of the system to detect unparking events.
An unparking event consists of a user return (indicated by
the wireless signature match) followed by the system sens-
ing (using the PHT test) that the user is moving at high
speed. We first look into how the parameters of the PHT
are set. In Figure (6), we showed that the distribution of
the Jaccard Index calculated over successive scan windows
is quite different for a user that is walking along a road in an
urban space as opposed to the one traveling in a vehicle in
typical urban traffic. We take a random sample of 10 traces
from our 41 driving traces and use these as a training set for
our detection algorithm. The sample is split into portions of
when the user is away from the vehicle and when the user is
traveling in the vehicle. Figure (12) shows the distribution
of the standard deviation of Jaccard similarity for the two
portions of these traces. It shows that the standard devia-
tion of Jaccard Index is about 0.16 before driving and rises
above 0.22 when the users drive away. We, therefore, choose
o =0.22, 6 = 1 (to detect a change as small as one standard
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Figure 11: Optimal window size.

deviation) and sample size ¢ = 5 to calculate k. Figure (6)
shows that the mean of Jaccard Index is around 0.5 when
the user is traveling in the vehicle. Thus, we choose a target
mean value of T = 0.55 and use PHT (Equations (6) and
(7)) to detect when the mean value of Jaccard Index calcu-
lated over successive windows falls below T' indicating that
the user is driving. Furthermore, for the driving away de-
tection we used a time threshold for the maximum duration
of the detection run. This was set to 15min after the user
has returned to the vehicle, so as to keep the duration of
any background sensing within reasonable bounds.

From the 41 traces where the users actually unparked and
drove away, ParkSense was able to detect user returns in 38
instances. The misses are due to the fact that the urban
radio environment is dynamic and at times can lead to bea-
cons with high reception ratio to disappear during the scan
window. Out of these 38 instances, ParkSense was able to
sense that the user is driving in 34 cases within the 15min
time window. On average, PHT took 5.3min to detect driv-
ing. The remaining instances where ParkSense was not able
to detect driving was due to users driving slowly or stopping
for extended periods of time. It is clear that as the drivers
eventually speed up and the mean Jaccard Index falls, driv-
ing will eventually be detected. This, however, requires the
sensing process to run longer in order to capture such special
cases. For the 4 non driving cases where users accidentally
marked return to vehicle but did not drive, it was able to
correctly detect non driving behaviour in all 4 instances.

The accuracy of the detection mechanism depends on the
selected parameters for configuring PHT (values of o, 6, T
and maximum sensing duration). These parameters can be
fine tuned in the deployed system by collecting data from
probe vehicles. It is possible to use some of the users as
probes by triggering the GPS sensor when a return to vehicle
is detected and using the GPS trace as ground truth to fine-
tune the specific parameters. These fine tuned parameters
can then be passed to the mobile devices of new users during
the payment transaction. Finally, as discussed in Section 2
since the purpose of the ParkSense app is to feed data into a
parking availability information system, we anticipate that
possible detection inaccuracies will be smoothed out when
data from multiple users is aggregated for a given location.

6.4 Special cases

In all the traces we collected through the ParkSense appli-
cation, the behavior of the users followed the pattern shown
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lated over successive windows before and during driving.

in Figure (1). However, there are situations where the user
may not follow this particular pattern. Example cases are:

e After parking, the driver returns to the parking loca-
tion and drives away in a friend’s car. If the two cars
are close to each other, the ParkSense application will
falsely detect such an action as “unparking”.

e A driver parks a vehicle and makes a payment that
triggers sensing. However, the driver then gives the
keys to someone else, who unparks the vehicle. Park-
Sense will not be able to detect this unparking event.

e The driver returns and unparks as expected. However,
immediately after vacating the space, he/she gets stuck
in the traffic. In this scenario, ParkSense may not
accurately detect the release of the space, considering
that the car has not yet driven away. In this particular
case ParkSense will eventually detect the evacuation
when the vehicle moves at a speed higher than the
walking speed.

Although these are rare scenarios, and we have not witnessed
any such cases during our deployment, nevertheless they can
have an impact on the estimated parking availability. Such
errors can be mitigated through a more conservative rec-
ommendation engine for parking availability, where users
are directed to areas where more than one space might be
available. Current infrastructure based systems already take
this approach by reporting only coarse-grained availability
of parking spaces. These systems label streets with high,
moderate or low probability of finding a space as opposed
to reporting the exact number of available spaces.

6.5 Energy Consumption

The energy consumption of sensing an unparking event
depends on the number of wireless scans performed during
each phase of our approach i.e. detecting a return to the
parked vehicle and sensing that the user is driving. Thus
the total energy consumption for a parking session can be
given as,
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Figure 13: Energy cost of detecting an unparking event.

where the two parts of above equation represent the energy
consumed during the two phases of our approach. During
the first phase it performs infrequent scans to check if a
user is returning to the parked vehicle by observing if any of
the access points captured during parking payment has re-
appeared. It then switches to frequent scans to perform sig-
nature matching and driving detection. In the above equa-
tion, tcheck is the interval with which infrequent scans are
performed, tqaway is the time the user spends away from the
vehicle, tgrive is the time required to detect that the user
has started driving, tscen is the wireless scanning interval
during this second phase and Fscqrn is the energy required
to perform one wireless scan. The mean value of Escqn for
Samsung Galaxy S2 (from Section 3) is 512mJ, the mean
value of tqway in our traces is 42 minutes, the mean value
of tarive (from Section 6.3) is 5.3 minutes and tscan is 2s.
Based on these values, Figure (13) shows the energy con-
sumption of our approach for different check intervals. The
energy consumption of a possible alternative approach that
relies on GPS can be given as,

tawa t rive
Faps =2 Eriz + Eindoor (_y) + Eoutdoor ( a )

tch,eck tsample

This assumes the typical scenario in which the user moves
indoors during taway. The GPS sensor looses its initially
acquired fix and consumes E;, 400, amount of energy for each
location request during this period. As the user moves out
and starts driving, it acquires a fix again with the energy
cost of Eri; and then starts consuming Eoytdoor energy for
each location estimate generated every tsqmpie sSeconds. We
use Frip = 23,44TmJ, Foutdoor = 2,831mJ and Findoor =
4,428mJ (assuming that it is kept on for at least 10s) from
Section 3 and tsqampie = 10s for these calculations.

Another possible alternative approach would be to use the
network based location. The energy consumption of this
approach can be given as follows,

t wan t rive
Enectwork = Enetioc ( = y) + Enetioc (d—>

check sample

where F,etioc is the energy required to perform one network
based location query. We use Fyetioc = 8,229mJ calculated
in Section 3 for these calculations. Figure 13 compares the
energy consumption of both of these possible alternatives to
our approach. It shows that the energy consumption of our
approach is significantly smaller than both of these alterna-
tives. The cost of our approach is only 11% of the energy
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Figure 14: Battery level for various sensing approaches.

consumption of network based location and 21% of the en-
ergy consumption of GPS based approach.

In our traces, the longest parking session is 3.5 hours.
With a typical 1650mAh phone battery and a 60s check
interval that can trigger frequent scanning, the predicted
energy consumption of our approach is around 1% of the
battery life. In order to verify this, we run a series of experi-
ments on a Samsung Galaxy S2 phone. For each experiment,
the battery is fully charged and an application is run that
samples the selected sensor at 60s intervals. It also logs the
remaining battery level reported by the operating system.
Figure (14) shows the results of these experiments. It shows
that in the standby mode the phone consumes 3% of the
battery due to the battery logging overhead. With our ap-
proach of Wi-Fi scanning at 60s intervals, it consumes only
5% of the battery, a small increase of 2% over the standby
mode. On the other hand, battery usage for periodic sam-
pling from the GPS sensor depends on where the phone is
located during sensing. If the phone is outdoors with a clear
view of the sky, GPS is able to acquire periodic location
fix and consumes about 10% of the battery. However, it
consumes 24% of the battery when it is indoors where it is
difficult to acquire a fix. This presents the upper and lower
bounds for the energy consumption of GPS sensor. In our
parking application, we expect that most of the users will
move indoors after parking. This not only increases the en-
ergy consumption but also makes it difficult to duty cycle
the GPS sensor based on user distance from the parking lo-
cation as the GPS sensor typically fails to produce a location
estimate in this case. Another issue that makes it difficult
to duty cycle GPS in an energy efficient manner is the un-
predictable time required to acquire a fix [16]. On the other
hand, our Wi-Fi based approach is free from these issues
due to the fixed response time and energy consumption of
the wireless transceiver.

Energy consumption for location sensing may be further
reduced in some cases through the use of a low energy sensor
such as acceleromter that can trigger more expensive sens-
ing when needed (as described in Section 3.3). Such tech-
niques are orthogonal to any of the aforementioned methods.
Therefore, the difference in energy consumption will still fol-
low the same relative trend.

7. RELATED WORK
7.1 Location Tracking Systems

There are previous pieces of work that use Wi-Fi signa-
ture matching for tracking user location. In [9] authors use

Wi-Fi signature matching to learn places that can be of sig-
nificance to a user. They use signature matching to sense
user dwell time and mark places with large dwell times as sig-
nificant. In [14], the authors present another approach that
can detect more fine-grained places using signature match-
ing. However, these approaches are focused on sensing in in-
door environments and therefore use signal strength based
matching functions to discriminate between nearby places
in buildings, offices etc. These matching functions perform
well in these environments where signal strength is high due
to proximity to access points. But, as we have shown, these
signal strength based functions do not perform well in our
outdoor scenario where the RSSI is usually low. In [7], au-
thors show that beacon reception ratio is a more robust in-
dicator of distance in outdoor environments. They use it
to estimate distances to access points. These distances are
then used for performing localization. There is a large body
of work on Wi-Fi fingerprint based localization [6]. These
approaches use parameters of the signal strength distribu-
tion to form a fingerprint for a location. This makes them
susceptible to changes in signal strength which is common
in outdoor environments.

7.2 Parking Detection Systems

A number of smart street parking aids systems have been
proposed. The SFPark project [4] is trialling the use of
wireless sensor nodes embedded into asphalt at each park-
ing location for real-time occupancy detection in down-town
San Francisco. The occupancy information is collected in a
central server and then provided to users looking for park-
ing spots. A similar trial is under way in central London [2]
and commercial ventures like StreetLine [5] are commercial-
izing this technology. However, the main issue with this
approach is the extremely high cost of the complete system
that hinders large scale deployment. For example, the SF-
Park project proposes to cover only 25% of the parking spots
in San Francisco at the total cost of 19.8 million US dollars,
and this does not account for the system maintenance once
in place. Similarly, the trial installation in London covers
only 137 parking spots. Such systems have not been widely
adopted often because they require large investments and
long term commitments from local governments.

Mathur et. al. [17] propose a mobile sensor network for
collecting road side parking spot occupancy. They use a
vehicle equipped with a GPS receiver and an ultrasound
transceiver attached to the passenger side as a mobile sensor.
As the vehicle drives forward, the ultrasound transceiver
measures its distance to the road side objects and thus used
to estimate if the space is occupied or vacant. The authors
propose to equip all the vehicles that routinely travel across
the urban space, such as taxis, buses, police vehicles etc.
with this sensing technology.

Google OpenSpot [1] smartphone application is a crowd-
sourcing alternative and allows drivers to mark a parking
spot as open if they were vacating the parking location.
Other drivers looking for parking could view these empty
spots on their smartphones. The main drawback of this ap-
proach is the lack of incentive for the drivers to submit a
report. Yan et. al. [24] try to address this problem by de-
signing an online auctioning system around the availability
of a parking spot, offering financial incentives to participat-
ing users. The drawback of this approach is that it still
requires manual user intervention for the system to be use-



ful. This often leads to users either forgetting or not caring
enough to send availability reports. An approach that au-
tomatically detects user departure from a parking location
can overcome such problems.

7.3 Transport Modality Detection

Significant research efforts have concentrated on the de-
tection of transportation modes using smartphone sensing.
Typical approaches rely on accelerometer or a combination
of accelerometer and location sensing (e.g. GPS). In [20]
authors use a combination of accelerometer and GPS data
and achieve a 93.6% accuracy in detecting user’s mode of
transportation. Although such mechanisms are valuable for
a general purpose activity detection framework, they come
at the expense of power hungry modalities, such as GPS.
Other pieces of work have explored the use of accelerometer
as a low power sensor that can trigger the use of expensive
sensing such as GPS. In [22] authors perform a light-weight
activity classification on continuous accelerometer data in
order to trigger GPS tracking when the user is within a pub-
lic mode of transportation such as bus or underground. We
consider this approach complementary to the Wi-Fi sensing
presented in the paper. Although not the focus of this pa-
per, suspending sensing when the user is not moving can
certainly allow further reductions in energy consumption.

8. CONCLUSIONS

We have presented an approach to on-street parking real-
time information management through mobile phone wire-
less sensing. Our approach takes advantage of the low power
consumption of the Wi-Fi radio to effectively report when
drivers leave parking spots. In contrast to other approaches
that either use fixed sensing infrastructure or user originated
information, our aim was to devise an automatic framework
to capture real time parking occupancy. Our evaluation re-
ports on accuracy and power efficiency of the approach with
respect to both a GPS and network location based solution.
We present robust signature matching based on beacon re-
ception ratio and a novel approach to driving detection.

In terms of future work, our plan is to negotiate with the
developers of one of the exiting parking payment applica-
tions to incorporate this technique in their framework.
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