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ABSTRACT
Yawning is a key and reliable indicator of fatigue, and detect-
ing fatigue is vital in scenarios ranging from safety-critical
situations for preventing performance impairment, to work
environments for promoting timely breaks, leading to en-
hanced worker healthiness and productivity. State-of-the-art
yawning detection studies face several limitations, such as
privacy concerns, high costs, and lack of portability. In this
paper, we conduct a feasibility study on enabling a privacy-
resistant, low-cost, and portable solution to detect yawning
by leveraging earphones equipped with inertial measure-
ment units (IMUs), with the aim of benefiting future fatigue
detection methods. We employ a range of preprocessing
methods and develop 5 neural networks along with 3 classi-
cal machine learning (ML) approaches based on our initial
research into the patterns within earphone IMU data from
yawning and various activities. We collect data from 10 par-
ticipants wearing a headphone with an IMU and evaluate
the performance of our models on both the collected dataset
and a public dataset. The results show 𝐹1 scores of up to 0.90
on the collected dataset and 0.71 on the public dataset, which
indicate the feasibility of yawning detection from earables.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mo-
bile computing.
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1 INTRODUCTION
Alertness is of paramount importance in safety-critical situ-
ations, such as long-haul driving, working with heavy ma-
chinery or in emergency response. Being tired can have a
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significant impact on a person’s ability to perform these tasks
safely and can lead to accidents; according to the National
Highway Traffic Safety Administration (NHTSA), there were
91,000 crashes involving drowsy driving in 2017, leading to
roughly 50,000 injuries and 800 deaths [23]. Moreover, exces-
sive drowsiness among individuals could have detrimental
effects on their work performance, resulting in decreased
productivity, frequent lapses in work, and a negative impact
on their overall mood and well-being [8, 26]. Therefore, the
ability to detect when a person is becoming drowsy as to
encourage taking breaks is of great importance.

Yawning is a reliable indicator of drowsiness since it often
occurs when an individual is feeling tired or sleepy, serv-
ing as a visible sign of the state of alertness [10]. Further,
previous studies show it is a commonly-used and success-
ful method for inferring drowsiness [4, 15]. Existing studies
have intensively investigated automatic and reliable yawn-
ing detection techniques using vision-based [4, 7, 21, 24,
28], wireless-based [27], and wearable-based [9] techniques.
However, vision-based solutions could incur significant pri-
vacy issues and high system costs. Both vision-based and
wireless-based approaches are not portable, being limited
through a requirement for dedicated infrastructure (cam-
eras and WiFi transmitters near the user, respectively), and
they are also environment-dependent, being influenced by
lighting conditions and multi-path reflections, respectively.
The wearable-based solution is susceptible to various hand
movements encountered in daily life since it uses wrist-worn
photoplethysmography (PPG) and is designed specifically
for driving scenarios with consistent hand movements.

To this end, this paper aims to explore a privacy-resistant,
low-cost, portable solution of yawning detection in daily life.
Particularly, we investigate this issue based on IMUs embed-
ded into standard earphones, a promising candidate for this
task due to the proximity of earphones to the jaw, thus be-
ing well-suited to capturing yawning-incurred movements
[11] and being isolated from hand motions. IMUs addition-
ally provide high privacy-resistance, are low-cost [20], are
small and comfortable enabling portable, user-friendly, non-
invasive long-term usage, and are increasingly widespread,
with earphones such as the Apple Airpods [1], Google Pixel
Buds [2], and Samsung Galaxy Buds [3] all shipping with
IMUs.

https://doi.org/10.1145/3615592.3616854
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We introduce a feasibility study for yawning detection
by leveraging headphones equipped with 6-axis IMUs (i.e.,
3-axis accelerometer and 3-axis gyroscope). We employ a
range of time- and frequency-domain preprocessing meth-
ods and develop 5 neural networks along with 3 classical
ML approaches via our initial understanding of the patterns
within earphone IMU data from yawning and different activ-
ities. IMU data is collected from 10 participants wearing the
eSense headphones [22] while performing various activities
including yawning, resting, walking, talking, making head
movements, eating and making various facial expressions,
aiming to distinguish yawning from other daily activities.
In addition, we also leverage a public dataset collected in
[12], a larger 21-user study with data obtained from similar
activities to validate the feasibility of our study.
We show the LSTM-based model using the preprocessed

raw data to be the most effective model with an average
𝐹1 score of 0.90 on the collected dataset, and 0.71 on the
public dataset. The CNN-based model using spectrograms
of the preprocessed raw data is also proved effective, with
an average 𝐹1 score of 0.89 on the collected dataset, though
limitations of the lengths of activities obtainable from the
public dataset hindered the model on this dataset.
We summarize the contributions of this work as follows:

1).We propose the utilization of earphones equipped with
IMUs to enable a privacy-resistant, low-cost, and portable so-
lution of yawning detection. 2).We collect a dataset through
earables from 10 participants, which contains yawning and
various daily activities. 3). We conduct a comprehensive fea-
sibility study of yawning detection using earphone IMUs.
Specifically, we employ a range of preprocessing methods
and develop 5 neural networks along with 3 classical ML
approaches based on a preliminary study on the IMU data,
and evaluate yawning detection performance using these
models on both the collected and public dataset. Our evalua-
tion shows 𝐹1 scores of up to 0.90 on the collected dataset
and 0.71 on the public dataset, which validates the potential
of earables for future fatigue detection methods.

2 RELATEDWORK

Drowsiness detection. Existing studies for drowsiness de-
tection mainly focus on three categories [25]: 1). Behavioural
approaches, that typically utilize cameras with computer
vision techniques to detect and extract drowsiness-related
features such as yawning [13], facial posture [6, 29], and
eye movement [14]. These methods are effective and non-
invasive, but are susceptible to limitations such as significant
privacy concerns, high system costs, limited service cover-
age, and variability in lighting conditions. 2). Physiological
approaches, which detect drowsiness through sensing and
analysing vital signs of individuals, like using a headpiece

to detect EEG signals [5], or a chest harness to detect heart
rate, breathing rate and other metrics [30]. Although these
approaches have achieved high accuracies, their sensing
modalities are invasive, leading to reduced user acceptance.
3). Vehicular approaches, which use data from the vehicle be-
ing driven to infer drowsiness; common features include the
angle of the steering wheel [19] or a lane detection system
[17]. These approaches are non-invasive, but are highly sus-
ceptible to external factors such as road conditions, weather
and individual driving ability [16], and are limited to vehicle-
based scenarios.

Yawning detection. Previous studies propose a broad set of
approaches for yawning detection using vision-based tech-
niques [4, 7, 21, 24, 28]. These studies commonly extract spa-
tial and/or temporal features from captured human faces and
behaviors using cameras through analysing the geometric,
color and movement information manually [7, 28] or using
learning techniques [4, 21, 24]. However, vision-based ap-
proaches are vulnerable to substantial privacy concerns, high
system costs, restricted service coverage, and susceptibility
to lighting conditions, e.g., blocked line-of-sight. One study
[27] recognizes yawning while driving using in-vehicle WiFi
signals through monitoring the changes in the channel state
information caused by yawns. However, this system is highly
environment-dependent and requires dedicated infrastruc-
ture, i.e., a signal transmitter and receiver. One wearable-
based solution [9] proposes the use of a PPG sensor worn on
the wrist for yawning detection while driving. While this ap-
proach is portable, the presence of various hand movements
in daily life can interfere with the PPG signals and the pro-
posed design is tailored specifically for the driving scenario,
where the consistent hand movements are expected.

The most related work to ours is developed by Gashi et
al. [12]. They conducted a study aiming to hierarchically
classify 5 classes of head movements, including yawning,
through a shallow classifier and a CNN model using IMUs
integrated into eSense headphones [18]. The performance on
yawning detection is subpar since this work focuses mainly
on the broader classification of head movements, with two
5-class classifiers achieving 𝐹1 scores of 30.63% and 30.24%
respectively for the detection of yawns. This highlights an
unexplored area in the field, revealing the need for further
investigation into the feasibility of yawning detection using
earphone-based IMUs.

3 PRELIMINARY
3.1 Preliminary Study
Before constructing any models, we first study the structure
of both accelerometer and gyroscope data captured by the
eSense IMU under various daily activities and yawning. This



Yawning Detection using Earphone Inertial Measurement Units SmartWear ’23, October 6, 2023, Madrid, Spain

Figure 1: Time-domain plots illustrating the accelerometer and gyroscope data for various activities. All data was
recorded at 32Hz.
understanding validates the feasibility of detecting yawning
from IMUs on earables in a preliminary manner.
Figure 1 showcases the time-domain data while a user is

walking, making head movements, and yawning. Distinct
features can be observed in each of the time-domain signals.
During walking, there are prominent spikes in the both axes
with frequencies around 0.8Hz, with extended spikes in the
gyroscope axes when turning. Head movements are charac-
terized by erratic changes in both axes. Yawning has a unique
pattern, with relatively stable readings leading up to a yawn,
followed by a significant spike in the gyroscope z-axis during
the exhale, before returning to a resting state. Given the pres-
ence and discernibility of these structures among various
activities, it validates the feasibility of yawning detection
from IMUs on earables. Moreover, a convolutional model is
likely to be effective in detecting these patterns, similar to
human perception. Additionally, the extended duration of a
yawn and the notable changes in each axis over time suggest
that an LSTM-based recurrent model would capture these
temporal dynamics effectively.

3.2 Preprocessing

Data Transformation. Data is split into windows with a
fixed length to ensure consistent input sizes for the networks.
One of the following three types of input transformations
can then be applied to these windows: eIMU: The data re-
mains in its original format, with no further processing. Each
window records the acceleration and gyroscope values for
each timestep and axis, resulting in a matrix of shape (𝑠, 6),
where 𝑠 the number of samples in each processing window.
FFT: The data is transformed into the frequency domain via
a Fast Fourier Transform (FFT). Each window records the
magnitude of the different frequency components present,
resulting in a matrix of shape (𝑓 , 6), where 𝑓 the number of
frequency components tracked. Spectrogram: Each window
(plus some additional data padding to maintain the width)

is transformed into a spectrogram, showing how the fre-
quencies present in the window change over time. This is
equivalent to splitting the window up into 𝑡 equal sections,
then applying an FFT transformation with 𝑓 frequency com-
ponents to each; thus, each window records the 𝑓 frequency
components for each of the 𝑡 subsections, in a matrix of
shape (𝑡, 𝑓 , 6).
Filtering. Before splitting data into windows, we apply var-
ious filters to the data, primarily for noise reduction. In Sec-
tion 5.4, we compare Butterworth low-pass and high-pass
filters, as well as a moving average filter. Additionally, a scale
normalization filter is employed to ensure the signal is scaled
between -1 and 1, necessary for FFT transformation.
Equalisation. The final preprocessing step involves equal-
izing the number of positive and negative windows in each
dataset since a balanced dataset is crucial for training a neu-
ral network to avoid biased learning and ensure fair test-
ing. We observe an imbalance with fewer yawning windows
compared to non-yawning windows. Therefore, random sam-
pling (with removal) is performed on the non-yawning set
to make the same number of windows as the yawning set.

4 YAWNING DETECTOR
4.1 Problem Statement
The yawning detection problem involves binary classifica-
tion, where each input window is classified as either yawning
or non-yawning. During model training/testing, the input
to the model is a matrix consisting of𝑚 windows, with each
window’s size determined by the applied data transforma-
tion during preprocessing. The model output is an array of𝑚
floats ranging from 0 (indicating no yawn presence) to 1 (indi-
cating full confidence in a yawn’s presence), representing the
network’s predictions for each window. Additionally, models
are trained using the binary cross-entropy loss function with
the Adam optimizer. In total, 5 neural network models and 3
classical ML approaches are constructed and evaluated. The
structure of each model is introduced as follows, ordered by
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the type of data transformation listed in Section 3.2. Their
performance will be illustrated in Section 5.4.

4.2 eIMU Models
eIMU models take windows of eIMU data as input.
eIMU LSTM. The first model is an LSTM-based model, con-
sisting of three LSTM layers, each with 128 units and a 𝑡𝑎𝑛ℎ
activation function. These LSTM layers are followed by a
global average pooling layer, which takes inputs from all
three LSTM layers to perform average pooling. The result-
ing output is then passed through a single dense layer with
one unit and a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation function to get the final
prediction. Additionally, there are three dropout layers, each
applied after an LSTM layer, with a dropout rate of 0.3.
eIMU CNN. The second model is a CNN-based model. The
input data is initially passed through a reshape layer, trans-
forming the original (𝑤, 6) matrices into (𝑤, 1, 6) matrices
– this extra dimension allows the utilization of 2D convo-
lutional layers. Following the reshape layer, there are four
convolutional layers, with each subsequent layer doubling
the number of filters compared to the previous layer, and
the first convolutional layer has 64 filters. The kernel size of
each layer is (5 × 1), and padding is applied to ensure the
output and input sizes of each layer remain equal. A 𝑅𝑒𝐿𝑈

activation function is used in each convolutional layer, fol-
lowed by a max pooling layer with a pool size of (2 × 1), to
reduce the number of parameters. A dropout layer with a
dropout rate of 0.5 follows the last max pooling layer to miti-
gate overfitting, and a flatten layer is employed to reduce the
number of dimensions in the resulting matrix. The network
concludes with two dense layers: the first layer has 64 units
and a 𝑅𝑒𝐿𝑈 activation function, while the second layer has
1 unit and a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation function to provide the final
prediction.

4.3 FFT Models
FFT models take windows of the FFT data as input. There are
two FFT models: FFT LSTM and FFT CNN. Since both eIMU
and FFT data transformations produce similar 2-dimensional
data, the same model structure can be reused from the eIMU
models. However, a slight difference arises in the FFT models
where a scale normalization filter needs to be applied on
the input data to ensure consistent FFT amplitudes despite
sensor variations caused by e.g. variable head orientation.

4.4 Spectrogram Model
The spectrogram model takes windows of the spectrogram
data as input. Since a spectrogram is naturally time-distributed,
we only leverage CNN-based model for this input, Spectro-
gram CNN. The model consists of four convolutional layers,
each employing 256 kernels with a kernel size (5×5). All four

layers utilize a 𝑅𝑒𝐿𝑈 activation function and are followed by
a max-pooling layer with a (2×2) pool size. The output of the
final convolutional layer is then passed through a dropout
layer with a dropout rate of 0.5, followed by a flatten layer to
reduce the number of dimensions. Subsequently, the output
is passed into two dense layers: the first layer comprises 64
units with a 𝑅𝑒𝐿𝑈 activation function, while the second layer
consists of 1 unit employing a sigmoid activation function,
to provide the final prediction.

4.5 Classical ML Approaches
Although neural networks were expected to be the most
effective models due to their capability to consider time dis-
tribution, we also construct and evaluate three classical ML
approaches, including K-nearest neighbors, support vector
machine, and random forest.

5 IMPLEMENTATION AND EVALUATION
5.1 Data Collection

Datasets. A mobile app was developed to collect the eSense
IMU data. Dataset A was collected with a 96Hz sampling
rate by the app via a human study1, whereby 10 participants
were asked to wear the headphones and perform various
tasks. The study was conducted in a quiet room, and the
tasks performed were as follows:
• Yawn: Participants yawn (or mimic yawning2) 100 times.
• Rest: Participants sit comfortably for 5 minutes.
• Walk: Participants walk normally for 5 minutes.
• Talk: Participants read a provided text for 3 minutes.
• MoveHead: Participants move their head 30 times in each
direction.

• Eat and Drink: Participants eat from a small selection of
food and drink water.

• Expressions: Participants smile, frown, and open their
mouths repeatedly for 30 seconds each.
A second dataset, Dataset B, is a subset of the public HA-

FAR dataset [12]. The public dataset is collected from 21
participants wearing the eSense headphones and contains
32Hz IMU recordings of nodding, head shaking, talking, smil-
ing and yawning activities. However, given the prevalence
of non-yawning data, Dataset B contains all yawning sam-
ples from the public dataset mixed with an equal number of
samples picked randomly from all other types. This aims to
prevent class imbalance.
Data labelling. Data is labelled on a window-level, where 1
represents a yawn present in the window, and 0 otherwise.
In Dataset A, these labels are input by the participant via a
1The experiment was approved by the Ethics Committee of our institution.
2During data collection, we attempted to replicate mimic yawnings as
closely as possible to real yawnings.
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button on the app acting as a marker indicating a yawn event
took place around when the button was pressed. In Dataset
B, activities are marked by type (e.g. ‘Yawn’, ‘Talk’, etc.), and
windows obtained from the recordings of these activities are
labelled according to this marking, with any type other than
‘Yawn’ being labelled 0.

5.2 Training
For Dataset A, windows were split into an 80/20 train/test
split over all participants. When training, the train split was
further broken down into a validation set representing 10%
of all data. Which training data was used in the validation
set was changed each time (proportionally to the number
of models being trained), simulating a cross-validation tech-
nique as to ensure the model was not overfit to the data it
was trained on. For Dataset B, an approach simulating tai-
loring the dataset to specific individuals was taken. A set of
users making up around 25% of all data was selected, then
80% of the data from these users was selected (20% of the
total data) to be the test set. All remaining data formed the
training and validation sets, as in Dataset A, after which the
same cross-validation technique was applied.

5.3 Evaluation Metrics
The 𝐹1 score was used as the primary metric for evaluating
the performance of each model. This was chosen for being
an all-round metric whereby a high 𝐹1 indicates success in
both correctly identifying yawns and correctly identifying
non-yawns. Precision and recall are also given in the results.

5.4 Results

Results on neural network models. Figure 2 shows the
results of the different models when trained on Dataset A.
The models were optimised based on a comparison of the
effectiveness of various filters, window size, separation, and
FFT segment width and overlap. For the eIMU models, the
optimal values used a 3-second window size with 1 second
separation between each pair, with a smoothing filter ze-
roing the edges of the data to prevent windowing artefacts
(such a filter is not applicable to the shorter, non-overlapping
windows of Dataset B). For the FFT and spectrogram models,
a 6-second window size with 1 second of additional segment
overlap on either side with a 12Hz low-pass filter proved
optimal. All models resulting from this perform well, with
the eIMU LSTM model performing best on average with an
𝐹1 score of 0.90. The model has a notably high average preci-
sion (0.94), meaning the false positive rate is low; however, a
higher number of false negatives led to the recall being lower
(0.86). This is also true of the FFT LSTM, having a much lower
recall (0.69) than precision (0.81), though not clearly of other
models, suggesting that there exist indicators of a yawn that

our LSTM models are unable to extract. Dataset B also backs
up this claim, with the eIMU LSTM reaching a precision of
0.83 with no filter but attaining only 0.61 recall, and the FFT
LSTM comparing 0.60 precision to a (very variable) 0.5 recall
under a moving average filter.

Figure 3 shows a comparison of results when different fil-
ters are applied to Dataset B. 𝐹1 scores are universally lower
than with Dataset A, likely a product of the inability to cus-
tomize the models as greatly. In Dataset A, recordings were
continuous throughout the activity, while Dataset B contains
a multitude of short, discontinuous activities. With shorter
recordings, window size is limited, itself limiting the FFT
segment properties, and discontinuity prevents any over-
lap between windows. The eIMU models still perform well
despite this, though the FFT and spectrogram models give
somewhat poor results. Given that the optimal parameter
search in Dataset A found the optimal window size for these
models to be 6 seconds with 2 seconds of segment overlap,
these results are best explained by the limitation imposed
on the window size for these models.
Results on classical ML approaches. Regarding the clas-
sical ML approaches, the K-nearest neighbours approach
achieved the best results on Dataset A, with an average 𝐹1
score of 0.63, lower than the neural network approaches.

In summary, the results obtained are promising, with the
most customized models reaching 𝐹1 scores of up to 0.90
and 0.71 the two datasets respectively. All model types show
promise, though the LSTM model over the raw data with
a smoothing filter (where applicable) proved reliably con-
sistent throughout. The FFT and spectrogram-based models
were effective when given long, continuous data windows,
but proved unreliable when the data was of a limited size.
As expected, these neural network approaches proved better
than single-point classical ML algorithms.

6 DISCUSSION
Yawning co-occurring with other activities. In our study,
yawning is initially examined as a standalone activity. How-
ever, in real-world contexts, yawning sometimes coincides
with activities like walking or head movements. Our pri-
mary objective in this study is to explore the feasibility of
utilizing IMUs on earphones for detecting yawning. In future
research, we aim to refine our model to ultimately discern the
distinct characteristics of yawning, even when it co-occurs
with other activities, by understanding the effect of interplay
between yawning and other daily activities on the IMU data.
Unbalanced dataset. In line with our primary objective,
both datasets were balanced in order to most accurately
test the classification abilities of the models. Indeed, in a
production setting, a yawning event is significantly less likely
to occur than a non-yawning event. If the models defined
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Figure 2: A comparison of the 5 deep learning models with their optimal parameters on Dataset A.

Figure 3: A comparison of the 5 deep learning models with various filters on Dataset B.

here were used, the class imbalance between training and
deployment would hinder the generalisability onto new data;
in such a case, the dataset should be only be balanced as far
as the proportion of yawning to non-yawning events in real-
world scenarios.

Model generalizability. To ensure our model’s general-
izability, we employ cross-validation, a proven method to
evaluate performance on unseen data and mitigate potential
overfitting. While this has strengthened our model’s general-
ization capability, we acknowledge the need for continuous
improvement. Therefore, we intend to explore and imple-
ment more methodologies in the future to further enhance
the generalization capability.

Long-term usage. In order to be truly effective in real-world
contexts, the system must be able to work for extended peri-
ods of time. On the one hand, the models process IMU data
in short intervals for each detection, specifically 3, 3, and 6
seconds for the eIMU, FFT, and spectrogram models, respec-
tively. This setting inherently minimizes the potential for
long-term drifting issue of IMU data. Since the drifting issue
primarily manifest over extended periods, the use of such
short data windows makes the drift negligible. On the other
hand, given the portable context, reserving power where
possible is of high importance, and applying the computed
models continuously would be a heavy drain on battery life.
As such, a lightweight window detector with a low false-
negative rate could be employed to first detect the possibil-
ity of a yawn within a window, before being passed to the
computed models for a more accurate analysis. We plan to
address this power reservation design in our future work.

7 CONCLUSION AND FUTUREWORK
In conclusion, this paper proposes a privacy-resistant, low-
cost, portable solution for yawning detection by leveraging
earphones equipped with IMUs. We collect a dataset from
10 participants using the eSense headphones, containing
yawning and various daily activities. A range of preprocess-
ing methods are employed and 5 neural networks along
with 3 classical ML approaches are developed based on a
preliminary study on earphone IMU data. We evaluate yawn-
ing detection performance using these models on both the
collected and one public dataset. The results demonstrate
promising performance, with 𝐹1 scores of up to 0.90 on the
collected dataset and 0.71 on the public dataset, which in-
deed imply the potential success of yawning detection from
earables. Further research can build upon this solution to
advance fatigue detection methods.
Regarding future work, an interesting addition would be

to train the models with other types of data. The eSense
headphones come with a microphone which was not used
here due to stricter ethical guidelines surrounding user data;
however, the microphone could detect the sound of a yawn
as a third feature to train with, giving more data to train on
and thus generating a more robust model. Other types of
data that could be collected from an earphone include heart
rate, blood oxygen levels and temperature, all helping create
comprehensive model for yawning detection.
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