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Abstract—Gait behaviour is a key health metric. Temporal,
spatial and kinetic walking gait parameters are valuable in
enhancing sport performance and early health diagnostics Full
gait assessment requires a gait clinic and existing wearable gait
tracking systems typically measure isolated subsets of parameters
tailored to specific applications. This is useful when the condition
to be monitored is known, but fails to offer a comprehensive view
of an individual’s gait traits when their pathology is unknown or
changing, or a general assessment is required. To support holistic
walking gait tracking, we introduce WalkEar, a novel sensing
platform designed to simultaneously track gait parameters using
commodity earbuds. WalkEar operates by detecting gait events
to derive temporal gait parameters and segment the IMU data.
WalkEar then progresses earable gait assessment by, for the first
time, estimating kinetic gait parameters and reconstructing the
vGRF curve using machine learning. Each parameter is calculated
on a step-to-step basis for gait variability and asymmetry. We
developed an earbud prototype and collected data from 13
participants using gold standard force plates and instrumented
treadmill ground truth. Extensive experiments demonstrate the
promising performance of WalkEar, achieving an overall MAPE
of 5.1% in estimating gait, 2.0% MAPE on kinetic gait parameters,
and an NRMSE of 5.3% for vGRF curve reconstruction.

Index Terms—Wearables, Earables, Gait, Spatiotemporal gait
parameters, Kinetic gait parameters, Ground reaction force.

I. INTRODUCTION

Gait analysis, the study of human locomotion, is crucial
for clinical evaluations and wellness monitoring. Gait analysis
has wide-ranging applications in rehabilitation, sports science,
fitness monitoring [1], and clinical settings, aiding in injury
detection, gait disorder identification, and early diagnosis of
conditions like Parkinson’s disease [2]. Walking gait parameters
can be categorized into temporal (e.g., cadence, stride, stance,
and swing time), spatial (e.g., step length and vertical displace-
ment of the center of mass), and kinetic (e.g., ground reaction
forces, joint torques). While temporal and spatial parameters
are commonly assessed and associated with overall fitness
levels [1] and neurological conditions [3], kinetic parameters
offer additional insight into biomechanical determinants of
movement and the loading of anatomical structures [4] and
pathologies such as osteoarthritis [5]. Additionally, the left
to right asymmetries in gait, typically tracked in left-right
differences in gait parameters, are commonly used to track and
assess clinical disorders [6].

Outside of the lab, wearables are the main method for gait
assessment. Current methods for wearable gait analysis involves
attaching IMU sensing devices to the shoes [7], [8], ankles and
lower legs [8], [9] or hips and lower back [9], [10]. However,

these devices are often not widely available, are expensive
devices with only a singular use case and can be socially
unacceptable or unconformable to wear. To address these issues,
some researchers have explored using commercial wearables
like smartwatches [11]. Additionally, these methods typically
focus on specific subsets of gait parameters for particular
applications, lacking a versatile monitoring tool that benefits
a broad population through ubiquitous wearables, where a
pathology may also be unknown.Moreover, smartwatches suffer
from strong interference due to the movement of human arms,
yielding mediocre gait monitoring performance [12].

To fill this gap, we present WalkEar, an earable-based
walking gait monitoring system able to simultaneously measure
temporal, spatial, and kinetic parameters using commonly ac-
cepted wearable devices. WalkEar leverages IMUs in earphones
to detect gait events and estimate parameters on a step-by-step
basis. It employs lightweight techniques for efficient operation
on mobile devices, compensates for different earphone orienta-
tions, and mitigates the impact of head movements. Compared
to other wearable form factors, earables are desirable as they
are widely available and have dual elements that are located
centrally and symmetrically in the body, allowing symmetric
monitoring of both feet. Additionally, the human head exhibits
high stability during walking, which incurs limited interference
and thereby enables more accurate gait monitoring.

While related works already estimate gait events for temporal
parameters from earables [13], [14], [15], WalkEar requires
these gait events for data segmentation to estimate the kinetic
gait parameters. The WalkEar algorithm outperforms the
related work for these parameters and enables the estimation
of novel parameters. For kinetic gait parameters, WalkEar
not only estimates useful scalar parameters such as weight
acceptance force and loading rate but also reconstructs a
continuous vGRF curve using a sequence-to-sequence model.
This offers advantages over related work that are essential
to comprehensive gait analysis, such as identifying subtle
anomalies in force distribution and timing. WalkEar uses each
of these parameters to estimate the user’s left to right gait
asymmetries.

We prototyped WalkEar using custom earphones equipped
with 6-axis IMUs (3-axis accelerometer and 3-axis gyroscope).
Data was collected from 13 participants who walked in various
experimental settings, including lab-controlled conditions on
an instrumented treadmill under different walking speeds, in-
the-wild evaluation including free-walking on force plates, and



a stop-and-go-scenario validation resulting in over 18,000 step
samples. WalkEar achieves an overall Mean Absolute Percent-
age Error (MAPE) of 5.1% for spatio-temporal parameters and
2.0% for kinetic parameters, as well as a Normalised Root Mean
Square Error (NRMSE) of 5.3% on vGRF curve reconstruction.
Compared to existing earable-based gait tracking systems,
WalkEar not only expands the coverage of gait parameters but
also delivers more accurate estimation with better generalization
ability, validated by leave-one-subject-out evaluations.

The key contributions of this work include:
• Simultaneous measurement of temporal, spatial, and kinetic

parameters, as well as their asymmetries, for holistic gait
analysis in real-time, locally, on a smartphone.

• Designing lightweight signal processing methods to improve
gait estimation results and enable the full WalkEar pipeline.

• Showing for the first time vGRF curve reconstruction from
an earable device and estimating additional kinetic gait
parameters.

II. WALKING GAIT PRIMER

A. Spatio-temporal gait parameters
Human gait involves two key events: heel strike (HS) and

toe off (TO), heel strike refers to the moment when the heel
contacts the ground and toe off occurs when the toes leave the
ground, marking the point at which the foot is no longer in
contact with the surface.

As illustrated in Figure 1, by connecting the two events
of the two feet and subtracting the relevant timestamps, four
temporal parameters can be defined: Cadence, Stride Time,
Stance Time and Swing Time. These parameters are typically
measured using an instrumented treadmill, force plates or a
motion capture system as the gold standard [16]. These four
parameters are estimated by WalkEar.

Spatial gait parameters relate to the body movements of
an individual while walking. An important spatial parameter,
the Vertical Displacement (VD) refers to the up-and-down
movement of the body’s center of mass during walking.

In summary, spatio-temporal gait parameters measured
in WalkEar are commonly used parameters that aid in the
understanding of changes in gait timing and fitness tracking
in daily life. For example, a study showed how cadence is
linked to the metabolic zone and intensity [17]. Spatio-temporal
parameters also play a valuable role in clinical settings. For
example, variability in parameters like cadence, swing time, and
stance time is critical for diagnosing Parkinson’s Disease [18],
requiring step-to-step assessment as is performed in WalkEar.

Fig. 1: Illustration of a gait cycle and corresponding temporal
parameters. Adapted from [19] with Creative Commons licence.

(a) (b)

Fig. 2: (a) Visualisation of the GRF and vGRF while walking. (b)
A typical walking vGRF curve annotated with the scalar kinetic
parameters assessed by WalkEar.

B. Kinetic gait parameters

Kinetic gait parameters are derived from the interaction
between the foot and the ground. When the foot makes contact
with the ground, a force called the ground reaction force (GRF)
is exerted by the ground onto the centre of pressure of the
foot. The vertical ground reaction force (vGRF) represents the
greatest force exerted by the ground on the body, as shown
in Figure 2a. It provides valuable insight into weight transfer
through the lower limbs, load bearing in the body and gait style.
It is also linked to various pathologies [20]. Within laboratory
settings, the gold standard method of vGRF measurement is
via the use of floor-embedded force plates, or force plates
integrated into a treadmill. By measuring the vGRF over time,
we can obtain a vGRF curve, as illustrated in Figure 2b. This
curve can be labeled with scalar characteristics, particularly the
two peaks, the Weight acceptance force and Push off forces,
the initial slope called the Loading Rate and the area under
the curve, known as the Impulse.

C. Asymmetry

Each gait parameter listed above is associated with a left-
right asymmetry. Asymmetry is important for identifying gait
abnormalities and monitoring changes in symmetry over time,
such as the onset of disease, during rehabilitation, or when
undergoing treatment [6].

We report symmetry using a symmetry index (SI) [21],
[22]. In this work SI is given as a percentage to allow
easier interpretation and can be calculated as follows : SI =
Xleft−Xright

Xreference
· 100%, where Xreference is the average value

of Xleft and Xright. When calculating the symmetry index,
the choice of reference depends on what is being assessed. For
example, in the case of injury, the healthy side is often used
as the reference.

III. SYSTEM DESIGN

The overview of WalkEar is shown in Figure 3. It starts by
taking two-channel IMU data as input. A series of preprocessing
steps are applied, followed by the estimation of temporal
parameters. The detected gait events are then utilized for
step-by-step estimation of gait parameters. Finally, based on
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Fig. 3: Flowchart of WalkEar system and gait parameters

the estimated spatiotemporal and kinetic parameters, WalkEar
performs an asymmetry analysis.

A. Pre-processing

1) Coordinate system: WalkEar utilizes IMUs on both sides.
The coordinate system of each side defined in WalkEar, denoted
as Coorg, as illustrated in Figure 4, consists of three axes:
Vertical (VT), Anterior-Posterior (AP), and Medio-Lateral (ML).
After capturing the IMU data, it is resampled from a non-
uniform rate to a uniform sampling rate of 150 Hz.

Fig. 4: Depiction of the coordinate systems Coordd, shown on a head
with a 3D printed earable. Coordg shown with the anatomical planes.
The angles θx, θy and θz shown between Coordd and Coordg .

2) Opportunistic calibration of earphone orientation: When
a user wears the earphones, the device coordinate system,
denoted as Coord, may differ from Coorg, due to user
movements or the wearing orientation. Since the IMU data
is collected in Coord, we need to project it into Coorg. In
WalkEar, we conduct opportunistic calibration of the earphone
orientation to compensate for coordinate misalignment utilising
the measured components of gravity in each IMU axis. This
process occurs when the user starts to walk and during any
periods of being stationary while walking. The workflow is:
• First, we identify the stationary period where the resultant

acceleration is near gravity, i.e., G = 0.981m/s, where the
resultant acceleration is atd =

√
(atx)

2 + (aty)
2 + (atz)

2, and
atx, aty and atz are the acceleration on three axes of Coord
at time t respectively. When the user is stationary, the mean
value of acceleration during a small window in the AP and
ML directions of Coorg should be 0, and the mean value in
the VT direction of Coorg should be close to gravity, i.e.,
G.

• We then calculate for each axis i:

θi = arccos

(
mean(ati)

G

)
(1)

where θi and ati are repeated for the rotations angles between
x, y, and z axis of Coord and V T of Coorg respectively
as shown in Figure 4.

• Finally, we transform the rotation angles (θx, θy, θz) into
a quaternion for coordinate system transformation between
Coord and Coorg separately for the left and right ears.
Figure 5 shows an example of the acceleration data before

and after the transformation while stationary. It demonstrates
how this transformation aligns the left and right devices, which
initially differ due to variations in how they are worn by the
user on each side, into the Coorg coordinate system.

3) Head motion artifact removal: When the user is walking,
unexpected head motions can affect the IMU data, degrading the
performance of gait monitoring. We make a key observation that
when there are head motions, the gyroscope data is significantly
stronger than when the user is walking, due to the much
smaller radius of rotation for the head motions. Figure 6 shows
the regions of gyroscope data above the threshold, chosen as
3 rad/s, during a period of walking. These sections with high
amplitude gyroscope signals correspond to head motions. The
gait parameters from these gait half cycles (from one HS to the
next HS) are discarded and an average of the surrounding gait
cycle parameters are instead used. To account for the significant
yaw drift over time in the IMU gyroscope, a highpass filter
is used to remove the baseline wander so head rotations are
accurately found. These filtered gyroscope signals are presented
in Figure 6 where short-term variations can be seen but no
long-term drifts.

4) Left-Right step detection: Since WalkEar utilises IMU
data from both sides, it can provide left-and-right asymmetry
analysis and detailed kinetic gait parameter analysis for each
side. To achieve this, we first subtract the right-side data (from
the right earbud) from the left-side data, then apply a low-pass
filter with a cutoff frequency of 5 Hz to filter out the high-
frequency noise. As illustrated in Figure 7, when the user leans
towards the left, indicating a left step (i.e., left HS), the filtered
data exhibits two large positive peaks. When the user leans
towards the right, indicating a right step (i.e., right HS), the
filtered data shows two large negative troughs. Therefore, we
conduct peak (trough) detection on the filtered data to recognize
each left (right) step. This goes to a sequence detector which
looks for two positive peaks, and then two negative troughs,
ignoring a trough or peak in between respectively.

B. Temporal gait parameter estimation

To measure the temporal gait parameters from pre-processed
IMU data, it is key to detect the timing of two gait events on
both sides: the HS and the TO, as illustrated in Figure 1. We
demonstrate the proposed HS and TO detection method on one
side, but the same process applies to both sides.

HS event detection. Since the HS occurs when the heel con-
tacts the ground, it creates a significant spike in accelerometer



(a) (b)

Fig. 5: Acceleration signals from the left and right IMU (a) before and (b) after rotations. Fig. 6: Example of head motion removal.

Fig. 7: Filtered (aleft
ml - aright

ml ) signal with detected peaks and troughs,
showing an alternating pattern corresponding to left and right steps.

data. We thus calculate the resultant acceleration, denoted
as atg =

√
(atap)

2 + (atml)
2 + (atvt)

2, where atap, atml and
atvt are the acceleration on three axes at time t. Then, atg
is differentiated to obtain a jerk signal. Peaks in the jerk signal
correspond to HS events, as these events are characterized
by sharp changes in acceleration when the heel impacts the
ground (illustrated in Figure 8). We observed that peaks in the
acceleration itself lagged behind the actual heel strike event,
resulting in a weaker correlation with cadence and stride time
when used as the feature for identifying HS.

TO event detection. The TO occurs when the toes leave
the ground, causing the foot lose contact with the ground.
TO detection is difficult as it is very close to the opposing
legs’ HS which is a much stronger signal. To detect TO
events, we analyze the acceleration along the VT axis (atvt)
because changes in gravitational acceleration are indicative
of the foot’s movement away from the ground. Specifically,
we first calculate the first-order difference of atvt (denoted as
a′vt), to calculate the jerk signal. After that, a Butterworth
low-pass filter is applied, with a 2 Hz cutoff frequency, to
aggressively smooth the resulting data (denoted as ∼ a′vt).
Our algorithm then identifies troughs and zero crossings in the
smoothed data following the most recent HS to identify the TO.
In the smoothed data, troughs indicate a locally large change
of acceleration, which is typical when the foot transitions from
being in contact with the ground to lifting off. Thus, the troughs
are indicative of a TO point. The zero crossing is used to locate
the correct trough to use, as these peaks represent stationarity in
the TO acceleration where the foot is finished lifting upwards.
This process is shown in Figure 9 where the TO events given in

red lines are shown to align with the minimum points followed
immediately by a zero crossing in the ∼ a′vt signal.

Parameter estimation. After detecting the HS and TO
events on each foot, the temporal gait parameters listed in
Section II-A can then be calculated using the differences in
timings of gait events shown in Figure 1. These estimations
rely only on the most recent gait event timings, rather than a
summation of prior timings, thus making WalkEar robust to
IMU sensor drift and error accumulation.

C. Spatial gait parameter estimation

The estimation of vertical displacement during one step
involves a multi-step process by capturing the vertical os-
cillations of the center of mass. The algorithm utilises nu-
merical integration to move from acceleration, to velocity,
and displacement. Between each integration step, a high-pass
filter is used to remove the drift of the sensor as well as the
offsets in integration. Finally, the data is segmented using the
HS gait events detected previously. The difference between
maximum and minimum displacement is calculated and given
as the Vertical Displacement parameter. Figure 10 illustrates
the left, right and average estimates of vertical displacement
from WalkEar against the ground truth. It can be seen that
the purple ”average” curve tracks the ground truth better than
either the left or right earables. This indicates that using both
earables gives a better estimate of movement of the center of
mass than a single earable. This estimation similarly happens
over a single gait cycle, lasting around half a second, reducing
any impact of sensor drift on the measurements.

D. Kinetic gait parameter estimation

The head does not replicate the characteristics of the
acceleration or force measured at the center of the foot. This
distinction is evident in Figure 9, which displays both earable
acceleration (yellow) and ground reaction force (blue and
orange). The significant differences between these signals show
that a simple proportional relationship, such as one based
on mass, cannot link them effectively, motivating the use of
regression techniques.

Specifically, this can be seen in Figure 9 showing both
earable acceleration (yellow) and the ground reaction force
(blue and orange). These signals are shown to be very different



Fig. 8: Derivative of ag , or the jerk signal,
with labelled heel strike events, showing peaks
corresponding consecutive to heel strikes.

Fig. 9: Filtered avt (∼ a′
vt) derivative signal

with labelled toe off events, showing troughs
corresponding to consecutive toe off events.

Fig. 10: Vertical displacement estimated by
the left and right earables, and the average
signal between them, compared to the GT.

from each other, showing that a constant of proportion like
mass will not link the signals together, hence motivating the
use of regression techniques.

1) WA Force, PO Force, LR, and Impulse estimation:
Segmentation. We utilize the resultant acceleration, atg, to
estimate kinetic gait parameters because its amplitude is directly
related to the force exerted. The acceleration is segmented for
regression analysis. Specifically, for the estimation of PO Force
and Impulse, the data is segmented for each stance phase. For
WA Force and LR estimation, we select the period from the
HS to 25% of the stance period (usually close to 0.15 s). This
is because the WA Force and LR are present at the start of
the stance period as shown in Figure 2b, compared to the PO
Force which occurs near the end, and the Impulse which is
derived over the whole stance period.

Feature extraction. The features extracted from each
segment are chosen for their ability to capture the dynamics
needed for kinetic gait analysis, validated with an F-Test. These
features encompass both time and frequency domain metrics,
each offering unique insights into gait mechanics. The time
domain features are maximum amplitude, mean and RMS
values, shape factor and crest, and clearance and impulse
factors, which directly measure the magnitudes and variability
of forces exerted during gait events. The frequency domain
features are Mean Frequency, Peak Amplitude and location,
and Band Power.

Regression model. To estimate the scalar kinetic gait
parameters, we employ an exponential Gaussian Process (GP)
regression model [23] using the extracted features to predict
the four kinetic gait parameters: WA Force, PO Force, LR, and
Impulse. Each parameter is estimated using a dedicated GP
model, trained specifically for that parameter. The models are
trained using ground truth forces normalised by the user’s body
weight. To personalise the model, separate models are trained
and evaluated using ground truth and inputs in Newtons (i.e.
unnormalised forces).

2) vGRF curve reconstruction: Histogram-based Gradient
Boosting Regression models are used to predict the vGRF curve.
This approach is selected for its efficiency in handling sequence
prediction tasks while maintaining relatively low computational
overhead. The input is the same as the scalar parameter models
segmented as described previously. The training data ground
truth uses force data that is normalised by the participants’ body

weight so that predictions are made in normalised forces with
the unit body weight (BW). These can be scaled to forces in
Newtons if the user’s weight is known, however, it is common
in the literature to estimate the vGRF profile only in the BW
unit [24]. We trained two models for WalkEar at different
levels of granularity, the first model uses 20 samples and the
second uses 100 samples, giving a finer resolution but increased
computational overhead. It is shown in Section V-I that the 20
sample model can run in real-time on a phone.

IV. DATA COLLECTION AND PROTOCOL

We collected data from 13 participants while walking. The
cohort included 9 males and 4 females amounting to 130
minutes of treadmill data and 39 minutes of force plate
validation data, resulting in over 18,000 step samples. To
the best of our knowledge, no similar public dataset exists
to evaluate our system. The participants had a mean age
of 29 mean weight of 73.0 kg mean height of 1.78 m mean
BMI of 21.5and mean foot length (calculated from shoe size)
of 27.1 cm. Each participant was instructed to wear running
shoes for the experiments. This study was approved by the
University of Cambridge Department of Computer Science
and Technology Ethics Committee under application number
2134. All participants in the study were healthy, however,
variance in gait parameters was created by a range of walking
speeds and heights of the participants, we show the mean
and standard deviation of each gait parameter in Table I. The
participants wore a 3D-printed earbud with an IMU mounted
to the earpiece. We used the MPU6050 [25] IMU which has
an inbuilt accelerometer and gyroscope. The accelerometer
range was set to ±2 G which encompassed the full range
of walking signal, and the gyroscope to ±250 ◦/s. The data
collection protocol consisted of a 5-minute walk at 3 kph
followed by 5-minute walk at 5 kph on a gold standard [26]
Bertec instrumented treadmill. Then participants performed the
in-the-wild test, completing 3 minutes of free walking at an
uncontrolled speed in a 15x5 m sized room with floor-embedded
force plates. On the treadmill, the participants were kept at a
constant 0% incline to mimic the dynamics of real walking [27].
Ground truth data was collected at a sampling frequency of
1000 Hz and pre-processed with a lowpass filter with a cutoff
frequency of 50 Hz. The participants were not instructed to
keep their head stable and were allowed to look around the



TABLE I: Mean and standard deviation (STD) values from the collected dataset for each gait parameter.

Parameter Cadence Stride Stance Swing WA Force PO Force LR Impulse VD

Mean Value 111 step/m 1.08 s 0.680 s 0.418 s 849 N 824 N 8860 N/s 403 Ns 0.73 cm
STD 12 step/m 0.14 s 0.026 s 0.038 s 166 N 148 N 2200 N/s 88 Ns 0.17 cm

(a) A participant standing on the
instrumented treadmill. Note: during
walking, both belts are used otherwise
the left and right steps intersect.

(b) The force plates annotated with
the user’s path. The force plates are
labeled in the order the user steps onto
the plates.

Fig. 11: Annotated photographs showing the experimental setup used
to validate WalkEar.

lab, although this was not specifically tested for. Additionally,
ground truth for vertical displacement was collected with a
Qualisys motion capture system using markers attached to the
participant. The experimental setups are shown in Figure 11.

V. EVALUATION

A. Gait parameter estimation performance

1) Timing: The results for the temporal gait parameters (i.e.,
cadence, stride time, stance time, and swing time) are shown
in Table II. We detect cadence with excellent performance, a
MAPE of 2.06%, amounting to an error of 2 steps per minute
within an average cadence per person of 111 steps/min in our
dataset. We detect stride time with a 1% error. Stance time and
swing time are computed with low errors of 3.1% and 5.1%
respectively. We observe that stance time error is higher than
that of swing time, on account of the complexity of accurately
detecting the toe off points. Although the heel strike creates
large spikes in the accelerometer signal, the toe off motion
is more subtle and needs to be identified using intelligent
processing. Despite this added complexity, we achieve results
that are competitive with literature (as shown in Section V-B).

2) Vertical Displacement: The estimation results for vertical
displacement (VD) are provided in Table II. We achieve a
1.93mm (or 2.72%) error in estimating the vertical displacement
compared to the gold-standard vision system. To fully evaluate
system performance, we also estimated vertical displacement
without earphone orientation calibration. Without calibration,
the error in vertical displacement is 12.2%, highlighting the
importance of the orientation correction.

3) Kinetic: Overall results for each kinetic parameter
examined are provided in Table II. These are validated using
a leave-one-subject-out (LOSO) validation scheme to simulate
the most likely application scenarios where no user-specific
training data is available, due to the expense and complexity of
label collection using high-end treadmills or force plates. The
presented results are averaged over all participants. Overall,
we achieve very low errors of less than 4% for all kinetic
parameters. Additionally, as shown in Table IV, we are able
to predict the kinetic parameters with good agreement with
the ground truth. This shows that we are able to predict the
variance in the kinetic parameters well and with little error.

4) Gait Asymmetry: This section reports on the accuracy of
the asymmetry of the gait parameters estimated by WalkEar.
The asymmetry values are reported as a symmetry index
(where the reference value is taken as the left-right mean).
Table III shows the absolute mean GT asymmetry, the absolute
mean estimated asymmetry, and the MAE between them. We
report the asymmetry in overall timing, asymmetry in each
kinetic parameter, and the overall kinetic asymmetry. We show
that our system is sensitive enough to detect the changes in
parameters between the two sides of the body with very low
errors for all asymmetries and always estimating the correct
left-right direction. Thus, our system is applicable to asymmetry
monitoring even when the extent of the asymmetry is small.

B. Comparison with related works

Table IV shows a comparison of the performance of WalkEar
with the reported performance of other earable gait parameter
papers discussed in Section VI. We implement the algorithm of
the best performing related work on temporal gait parameters,
EarGait [15], in our dataset, as well as using their reported
results. For the e-AR sensor we take the best result from the
three works using the sensor.

From Table IV, it is evident that WalkEar outperforms the
related work on the timing-related parameters. Specifically,
on the more difficult task of stance/swing time estimation,
the performance of WalkEar is far superior to the best found
in the literature (with an improvement of 44% and 41% for
stance and swing times respectively over the best results in
Table IV). WalkEar is also comparable to EarGait [15] in
cadence and stride time, which only require localisation of the
heel strike. Similarly, when the EarGait algorithm was applied
to our dataset, WalkEar demonstrates comparable performance
in cadence estimation and superior performance in estimating
other parameters, with EarGait showing marginally worse
results than the reported results in the paper [15].

Kinetic parameters have only been studied from the ear
by Attalah et al. [29] using the e-AR earable sensor. To
compare, we calculate the R2 score, which is a measure



TABLE II: Overall results for all gait parameters evaluated across the whole dataset.

Metric Cadence Stride Time Stance Time Swing Time VD WA Force PO Force Loading Rate Impulse
step/min s s s mm N N N/s Ns

MAE 2.47 0.0114 0.0216 0.0215 1.93 17.5 8.59 328 2.26
SDE 4.55 0.0214 0.0313 0.0314 2.51 23.2 11.3 491 3.59
MAPE 2.06% 1.02% 3.10% 5.14% 2.72% 2.12% 1.34% 3.74% 0.73%
ME -0.21 -0.00014 -0.00694 0.0067 0.94 2.69 -0.087 -105 -0.24

TABLE III: Overall asymmetry index.

Parameter Symmetry Index (%)
GT Earable MAE

Timing 1.76 2.78 1.38
WA Force 4.72 4.17 0.53
PO Force 3.45 2.95 0.66
LR 22.1 19.29 3.11
Impulse 2.01 1.87 0.19
Overall Kinetic 4.41 3.84 0.60

TABLE IV: Baseline comparison.

Parameter Ours e-AR [28], EarGait [15]
[29], [14] Reported Our Dataset

Cadence MAE 2.47 8.88 1.85 1.93
Stride time MAE 0.011 0.028 0.012 0.015
Stance Time MAE 0.022 0.038 0.076 0.064
Swing Time MAE 0.022 0.036 0.078 0.067

WA force (R2) 0.69 0.35 - -
PO Force (R2) 0.65 0.36 - -
Loading Rate (R2) 0.73 - - -
Impulse (R2) 0.69 0.26 - -

of the goodness of fit of a regression model. To obtain this
result, we performed 5-fold cross-validation on data from all
users per kinetic parameter to mirror the approach used by
Attalah et al. [29] which, importantly, did not assess their
system with held-out users. It is clear that WalkEar significantly
outperforms this work with far superior R2 scores for each
parameter, as well as addressing new parameters. In summary,
WalkEar outperforms earable literature on both temporal and
kinetic parameters, including when the best performing related
work is implemented on our dataset. In addition to improved
performance, WalkEar intelligently leverages features from
two earbuds, while the earable related works use only a single
earable.

C. vGRF curve reconstruction

The evaluation of the vGRF curve estimation was performed
with 3 validation strategies. A Leave-one-subject-out (LOSO)
cross-validation, as was done with the prior kinetic parameters.
As well as both 5-fold cross-validation across a mixture of
user data and per-user validation were performed to compare
with related work that doesn’t hold out one user. We report
error as Normalised Root Mean Square Error (NRMSE) on this
task to compare with related work. We trained two different
models for vGRF reconstruction at different granularities, one
with 20 samples per step (referred to as 20), and one with 100
samples (referred to as 100). These two versions are provided
to balance computational efficiency and granularity. We provide

the results of vGRF reconstruction in Table V and also compare
our results to those obtained by Jiang et. al. [24], who estimated
the vGRF curve from IMUs placed on the lower leg, feet and
trunk.

TABLE V: Comparison of vGRF curve reconstruction.

Validation NRMSE Correlation
Method Ours Ours [24] Ours Ours [24]

(20) (100) (20) (100)
LOSO 5.25 5.12 - 0.985 0.983 -
5 Fold CV 2.23 2.30 7.15 0.995 0.996 0.97
Individual 8.67 8.67 1.7 0.958 0.958 1.00

From the table, it is clear that we achieve good performance
across each validation strategy with very high correlation be-
tween the predictions and the ground truth curves. Interestingly,
the 5-fold cross validation and leave-one-subject-out perform
better than the individual model. This is since the quantity of
data for training is much smaller for an individual model, but
this performance is expected to increase with more data per
user. We also see that the 20 sample and 100 sample models
achieve similar results. However, as illustrated in Figure 12,
the 100 sample curve provides more detail than the 20 sample
model. There is thus a trade off between greater detail but
larger model size (88 MB) and inference time in the 100 sample
model compared to the 20 sample model with less detail but
smaller model size (18 MB). We also see from the table that
WalkEar outperforms the existing hip and foot based wearables
from the literature [24] for 5-fold cross validation, and that
our leave-one-subject-out performance is better than the 5 fold
cross validation from the literature. This shows the power of
our system to generalise to new users.

When evaluated against the GP models in estimating the
four scalar kinetic parameters this method performs worse.
Our evaluation shows a 4% increase in error across the four
parameters on average from the vGRF curve vs the GP models.
This is thought to be due to the downsampling of ground
truth vGRF curve for model training. This affects precise
peak heights, integration and differentiation for WA Force, PO
force, Impulse and LR respectively. Therefore, we use scalar
kinetic parameter estimation models for better performance
and lower computational overhead. However, the vGRF curve
reconstruction itself provides much finer detail on the vGRF
profile, such as peak and trough locations in time and inflections
during the loading period.

D. Individualised performance

In this section, we examine the performance per user.
Figure 13 provides results for the average MAPE of the
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Fig. 12: Sample result for the vGRF reconstruction from the test
data using the Leave-one-subject-out validation method for the (a) 20
sample model and (b) 100 sample model.

temporal (blue) and kinetic (orange) parameters for each
participant. The error in kinetic parameters is consistently
low amongst participants. However, the temporal parameters
have more variation with Participant 7 having the largest error
of 7.1% and Participant 1 having the lowest error of 0.87%.
Participant 7 has a larger error for temporal parameters due
to a loosely fitting IMU which dampens the vibrations of the
gait cycle leading to a worse estimation of the TO event. In
addition, to assess the impact of body type upon the errors
of WalkEar, we performed a t-test of the individual MAPE
against each participant’s height, weight BMI and foot length.
The results of this analysis showed no correlation at the 5%
significance level, although the sample size of this experiment
was limited to 13 participants. These results may suggest that
individual errors in WalkEar performance are linked to the
walking style of the individual rather than the body type.

Fig. 13: Comparison of average MAPE for averaged temporal and
kinetic parameters over each participant.

E. In-the-wild experiments

This section details two experiments ran in less controlled
settings to evaluate the robustness of WalkEar in in-the-
wild conditions. Accurate GRF ground truth data requires
force plates, which are typically embedded in treadmills,
as used to collected the majority of the data in this study.
Collecting precise GRF data without force plates is not feasible,
limiting options for in-the-wild experiments. For instance,
insoles equipped with force-sensitive resistors are unsuitable for
providing ground truth data. These devices have been shown to
produce errors in vGRF predictions comparable to the reported
performance of WalkEar [30], making them ineffective for
evaluating WalkEar.

1) Free walking validation: To assess system performance
under less controlled settings, we tested participants’ free
walking on force plates on the floor where the participants freely
chose and varied their walking speeds in the experiments as
illustrated in Section IV. The walking speeds had an average

Fig. 14: Comparison of the errors
during free walking and on a tread-
mill.

Fig. 15: Error comparison of
all gait parameters with different
treadmill speeds.

standard deviation of 0.83 kph compared to 0.07 kph on a
treadmill, showing a significant increase in gait speed variability
in the free walking experiment. Participants walked in laps
around a room 5x15 m in size over four floor-embedded force
plates (an illustration of this is found in Figure 11b). The
results for all parameters are presented in Figure 14. From the
figure, a performance degradation for both temporal and kinetic
parameters can be seen, with a higher percentage change for
the kinetic parameters. This is thought to be due to the kinetic
parameters being estimated from ML models thus experiencing
a distribution shift when being tested on force plate data
when trained on treadmill data, compared to the temporal
parameters being estimated with signal processing methods. For
this experiment, ground truth on vertical displacement was not
collected so it is not presented here. Overall, the performance
during free walking shows only a slight increase in MAPE of
1.6% for temporal parameters and 2.1% for kinetic parameters
compared to controlled treadmill experiments. We also perform
an analysis of the impact of walking speeds during free walking
as presented in Section V-F.

2) Stop-and-go scenario validation: WalkEar was tested
with a stop-and-go scenario, where participants transitioned
from standing still to walking. To acquire reliable ground truth
information for evaluation, this experiment was conducted
on the Bertec treadmill, as the force plates would not allow
enough consecutive ground truth steps to reach the target speed.
Participants started walking on a treadmill from stationary and
gradually increased to their desired speed, typically taking 5-8
steps to reach the target. Overall, the experiment demonstrated
an increase in MAPE of 7.3% for temporal parameters and
5.6% for kinetic parameters. This indicates a higher error rate
compared to the treadmill experiments, however, the errors
mainly occurred during the initial steps and settled quickly
thereafter, still marking an improvement over related works.

F. Performance impact from differing walking speeds

Treadmill speed variations: The user’s walking speed
affects the strength of the vibrations propagated to the head
during walking. Figure 15 compares system performance when
walking at two different speeds. It can be seen in the figure that
the error is smaller under slower speeds for timing parameters,
but larger under slower speeds for kinetic parameters. For
timing parameters, this smaller percentage error is mainly due



to the longer time taken for each gait cycle. For the kinetic
parameters, weaker foot strikes of slower walking result in
weaker vibrations being captured by the IMU making the
estimation of kinetic parameters more difficult.

Free walking speed variations: In addition, we performed
an experiment to test WalkEar’s performance under varying
speeds in the free walking experiment. Participants were divided
into two groups based on their average walking speed: above
and below the median speed of 4.3 kph. WalkEar’s performance
was then evaluated separately for each group. The results
displayed a pattern similar to that observed in the treadmill
speed analysis. In the faster group the MAPE was 4.17% for
temporal parameters and 3.76% for kinetic parameters. In the
slower group, the MAPE was 3.82% for temporal parameters
and 4.25% for kinetic parameters. Overall, WalkEar performs
reliably under various speeds in free walking.

G. Changes in footwear
All the data used for WalkEar was collected with participants

wearing running shoes. However, to show the impact on
WalkEar to the user’s footwear choice, we compare the previ-
ously presented results to an experiment where a participant
wore flat style shoes for a five minute walking experiment.
The results for this experiment are given as the MAPE values
for each gait parameter subset. The MAPE for spatiotemporal
parameters for flat shoes is 4.06% compared to 3.94% for
running shoes showing only a marginal increase for this
participant. The MAPE for kinetic parameters was 3.34%
for flat shoes and 2.45% for running shoes. While the increase
in MAPE for kinetic parameters was higher than that for
spatiotemporal parameters, it was still within one standard
deviation of the overall MAPE across the dataset. We expect
that this increase is due to all the training data for kinetic
parameters being on running shoes rather than a mixture of
footwear.

H. Benchmark evaluation
To fully understand the performance of WalkEar, we evaluate

the performance under different settings.
1) Impact of both channels: This section assesses the impact

of gait parameter estimation when wearing two earables, versus
just one. We present the results of this analysis in Figure 16,
which provides the performance using only the left, right and
fusion of both earbuds for each parameter. It is evident from
the figure that the fusion of both earbuds results in significant
performance gains. However, it is also evident that each channel
can be used in isolation with reasonable performance.

2) Impact of IMU drift: To show that the WalkEar perfor-
mance does not degrade due to IMU sensor drift, we compare
the performance during the first and last minute of a five minute
long walking experiment. This was repeated and averaged over
6 different participants and the averaged results are presented
in Table VI. From the Table it can be seen that the MAPE
does not significantly change between the start and end of
the recordings, showing the algorithm does not accumulate
error over time. Specifically, this is also true for the spatial
parameters that uses the integral of the acceleration signals.

Fig. 16: Results for overall MAPE
using both, left or right IMU chan-
nels for each gait parameter.

Fig. 17: Overall error of kinetic
gait parameter estimation with and
without personalisation.

TABLE VI: MAPE and standard deviation of MAPE (given
as MAPE±SD) for the first and final minutes of a five minute
walking experiment, grouped by subset of gait parameter.

Gait parameter subset Temporal Spatial Kinetic

First Minute 2.91%±3.78% 2.64%±2.93% 1.97%±3.02%
Final Minute 2.79%±3.45% 2.83%±3.12% 1.93%±2.83%

3) Sampling rate reduction: This experiment assesses the
impact of downsampling on estimation errors. We see that,
as expected, as the sampling rate is decreased, performance
slightly decreases. However, this decrease does not significantly
degrade performance, with a maximum error amongst all the
parameters at a 20 Hz sampling rate of 9% for swing time.
This is important since it means that our system can be run
on commercial earables which might impose lower sampling
rates due to battery life constraints, such as the AirPod Pro
with a maximum IMU sampling rate of 25 Hz [31].

TABLE VII: Impact of downsampling the IMU signal.

Sample rate 150 Hz (original) 100 Hz 50 Hz 20 Hz

Cadence 2.06% 2.12% 2.46% 3.84%
Stride time 1.02% 1.06% 1.11% 1.75%
Stance Time 3.10% 4.35% 5.52% 7.59%
Swing Time 5.14% 6.34% 7.82% 9.27%

WA force 2.12% 2.91% 3.14% 4.80%
PO Force 1.34% 1.95% 3.14% 4.76%
Loading Rate 3.74% 4.85% 5.43% 6.51%
Impulse 0.73% 1.42% 1.99% 2.89%

4) Personalisation: When determining the kinetic parame-
ters (as reported in Table II), we apply personalisation using the
user’s weight. When training our model, we weight normalise
the kinetic parameters and then scale the outputs by the user’s
weight, resulting in a final prediction of force in Newtons
(N), Loading Rate in Newtons per second (N/s) or impulse in
Newton Seconds (Ns). In this section, we assess the impact of
personalisation by providing error when training with weight
normalisation as has been presented in earlier sections versus
that when training without in when the system knows the user’s
weight Figure 17. Significant performance improvements are
obtained by the model knowing the user’s weight, showing the
power of our personalisation technique. User weight is easily
acquired from the users themselves and does not dramatically
change over time so it is an acceptable input for WalkEar.



I. System Performance

While WalkEar analysis can be done in the cloud, we believe
it would be preferable in some situations (i.e. for privacy
preservation) to perform computation on a personal device, e.g.,
a phone. Additionally, some on-device applications such as user
identification [32] and biometrics [33] use live gait information.
Therefore, WalkEar aims to provide a privacy-conscious, on-
device solution, ensuring that the algorithms remain lightweight
and responsive without compromising privacy.

TABLE VIII: Power consumption and latency.

Algorithm stage Battery consumption Latency (ms)
in 30 minutes (%)

Preprocessing and Timing 2% 0.006
Kinetic 3% 65.7
vGRF (20 samples) 10% 328.5
Spatial 2% 0.012

Overall 12% 394.22

This section presents the power consumption and latency of
predictions for WalkEar when executed on an iPhone 15 Pro
(3290 mAh battery). We created a phone application which runs
our algorithms, and present the resultant system performance in
Table VIII. We report the latency for each group of parameters
per step. The average cadence in our dataset is 111 step/min,
amounting to approximately 0.5 step/second. Our system can
operate in real-time since our overall system latency is 0.39 s
(less than 0.5 step/second). The 20-sample vGRF curve achieves
this real-time processing, while the 100-sample curve, with
a 1.6 s latency, is suitable for offline analysis with higher
resolution requirements. Communication latency between the
earbud and phone is negligible, with latency dominated by
processing time. Battery consumption was measured by running
the application continuously for 30 minutes. The application
consumed 12% battery, primarily due to the high latency of
the vGRF sequence-to-sequence model. However, if kinetic
parameter estimation without curve reconstruction is sufficient
for the user’s purpose, the overall battery consumption will be
significantly decreased. For context, idling with the screen on
for 30 minutes consumes 1% of the battery. Running timing and
spatial parameters increases battery usage by an additional 1%,
while kinetic parameter estimation adds 2%. The GP models
for kinetic parameter estimation have a size of 700 kB, while
the vGRF reconstruction models are 18 MB (for 20 samples)
and 88 MB (for 100 samples). The lightweight nature of our
models allows WalkEar to run feasibly within the memory
constraints of a typical smartphone.

VI. RELATED WORK

A. Wearable-based Gait Analysis

Gait analysis has been studied using various wearable
devices such as smartwatches [11], belt-attached pods [9],
smartphones [34], [35], and smart insoles [7], [36]. These
devices estimate parameters such as step length, swing time,
and stance time. Some studies have explored vGRF curve re-
construction using multiple inertial sensors [24], [37]. However,

these methods often require multiple sensors or custom devices,
limiting their practicality and user-adherence for daily use.

B. Earable-based Gait Analysis

Commodity earables, such as Apple AirPods Pro [38]
and high-end hearing aids [39], are equipped with IMU
sensors. Previous earable-based gait studies have focused on
activity recognition [40], step counting [41], and gait pose
classification [42]. Research on gait parameters using earables
includes work on the e-AR sensor for temporal parameter
estimation [43]. Jarchi et al. [28] developed an algorithm using
singular-spectrum analysis (SSA) to detect heel strike and toe-
off events. Subsequent studies [14], [15] further refined this
algorithm. Additionally, asymmetry analysis was investigated
from this algorithm [13]. For kinetic parameters, Attalah et
al. [29] achieved weak correlations using peak amplitude
features from earable IMU signals. These works are used
for comparison to WalkEar in Section V-B. The existing
earable-based studies typically focus on measuring isolated
subsets of walking gait parameters for specific applications. In
contrast, WalkEar is the first earable-based system that supports
application-agnostic estimation of a comprehensive suite of
spatial-temporal and kinetic parameters, offering detailed step-
to-step analysis. Additionally, WalkEar estimates the full vGRF
curve from earable IMUs, showing comparable results to studies
using lower limb and trunk-mounted IMU sensors [24].

VII. CONCLUSIONS

We have presented WalkEar, an application-agnostic walking
gait monitoring system using IMU data from earables. WalkEar
achieves comparable or superior performance to existing
literature across all tasks, providing continuous and detailed
analysis of spatio-temporal, kinetic parameters, and accurate
asymmetry analysis. Notably, we demonstrate for the first
time that vGRF can be estimated from the ear with comparable
RMSE to sensors on legs and shoes. Future work should include
validations on uneven surfaces and longitudinal experiments
to explore WalkEar’s effectiveness in observing gait patterns
and deviations over time. While WalkEar is not tested on gait
signatures from participants with pathological gait, as per the
analysis conducted in Section 4, it can measure a varied range
of gait parameters as it operates on a step to step basis with
no averaging and uses gait events with distinct features in the
IMU signals to segment the gait cycle. This opens the door to
the application of monitoring pathological gait. Additionally,
our dataset contains different speed levels as well as different
participants, some with some natural imbalance in gait, creating
a large variance in the dataset that WalkEar correctly predicts.
Additionally, as future work, we would like to test the system
clinically on participants with pathological gait.
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